Advertisement

Neurochemical Research

, Volume 27, Issue 9, pp 883–889 | Cite as

Berberine Inhibited Arylamine N-Acetyltransferase Activity and Gene Expression and DNA Adduct Formation in Human Malignant Astrocytoma (G9T/VGH) and Brain Glioblastoma Multiforms (GBM 8401) Cells

  • D. Y. Wang
  • C. C. Yeh
  • J. H. Lee
  • C. F. Hung
  • J. G. Chung
Article

Abstract

Studies have demonstrated that berberine exhibits the antineoplastic action in rat model. Rat glial tumor cells also have been shown to have N-acetyltransferase activity. In this study, we reported the effects of berberine on arylamine N-acetyltransferase (NAT) activity, gene expression, and DNA adduct formation in human brain tumor cell lines (G95/VGH and GBM 8401). The activity of NAT (N-acetylation of substrate) was measured and determined by high-performance liquid chromatography (HPLC) assaying for the amounts of acetylated 2-aminofluorene (AF) and nonacetylated AF. Human brain tumor cells (G9T/VGH and GBM 8401) were used for examining NAT activity and gene expression and AF-DNA adduct formation. NAT gene expression was determined by polymerase chain reaction (PCR) for the levels of mRNA NAT in both examined cells lines. The amounts of AF-DNA adducts were also determined and quantities by HPLC. The results demonstrated that NAT activity, levels of mRNA NAT1 and AF-DNA adduct formation in both examined cell were inhibited and decreased by berberine in a dose-dependent manner. The apparent values of Km and Vmax from NAT of both examined cells were also determined with or without berberine cotreatment. The data also indicated that berberine decreased the apparent values of Km and Vmax. These effects also indicate that berberine is a uncompetitive inhibitor.

Berberine N-acetyltransferase 2-aminofluorene DNA adduct gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Clayson, D. B. and Garner, R. C. 1976. Carcinogenic aromatic amines and related compounds, Monograph 173. Pages 366-461, in Chemical Carcinogens, Searle, C. E. (ed.). American Chemical Society, Washington, DC.Google Scholar
  2. 2.
    King, C. M., Romano, L. J., and Schuetzle, D. 1988. Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes, Elsevier, New York.Google Scholar
  3. 3.
    Weber, W. W. and Hein, D. W. 1985. N-Acetylation pharmacogenetics. Pharmacol. Rev. 37:25-79.Google Scholar
  4. 4.
    Tokiwa, H. and Ohnishi, Y. 1986. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit. Rev. Toxicol. 17:23-60.Google Scholar
  5. 5.
    Miller, E. C. and Miller, J. A. 1981. Searches for the ultimate chemical carcinogens and their reaction with cellular macromolecules. Cancer 47:2327-2345.Google Scholar
  6. 6.
    Flammang, T. J. and Kadlubar, F. F. 1986. Acetyl coenzyme A-dependent metabolic activation of N-hydroxy-3,28-dimethyl-4-aminobiphenyl and several carcinogenic N-hydroxy arylamines in relation to tissue and species differences, other acyl donors, and arylhydroxamine acid-dependent acyltransferases. Carcinogenesis (Lond.) 7:919-926.Google Scholar
  7. 7.
    Hung, C. F. and Lu, K. H. 2001. Vitamin C inhibited DNA adduct formation and arylamine N-acetyltransferase activity and gene expression in rat glial tumor cells. Neurochem. Res. 26: 1107-1112.Google Scholar
  8. 8.
    Hung, C. F. 2000. Effects of carmustine and lomustine on arylamine N-acetyltransferase activity and 2-aminofluorene-DNA adduct in rat glial tumor cells. Neurochem. Res. 25:845-851.Google Scholar
  9. 9.
    Hein, D. W. Acetylator genotype and arylamine-induced carcinogenesis. Biochim. Biophys. Acta. 948:37-66.Google Scholar
  10. 10.
    Weber, W. W. and Hein, D. W. 1985. N-Acetylation pharmacogenetics. Pharmacol. Rev. 37:25-79.Google Scholar
  11. 11.
    Cartwright, R. A., Glasham, R. W., Rogers, H. J., Ahmed, R. A., Barham-Hall, D., Higgens, E., and Kahn, M. A. 1982. Role of N-acetyltransferase phenotype in bladder carcinogenesis: A pharmacogenetic epidemiological approach to bladder cancer. Lancet. 2:842-846.Google Scholar
  12. 12.
    Ilett, K. F., David, B. M., Detchon P., Castledon, W. M., and Kwa, R. 1987. Acetylator phenotype in colorectal carcinoma. Cancer Res. 47:1466-1469.Google Scholar
  13. 13.
    Lang, N. P., Chu, D. Z. J., Hunter, C. F., Kendall, D. C., Flammang, T. J., and Kadlubar, F. F. 1986. Role of aromatic amines acetyltransferase in human colorectal cancer. Arch Surg. 121: 1259-1261.Google Scholar
  14. 14.
    Tang, W. and Eisenbrand, G. 1992. In Chinese Drugs of Plant Origin, Pages 361-371, Springer, London.Google Scholar
  15. 15.
    Amin, A. H., Subbaiah, T. V., and Abbasi, K. M. 1969. Berberine sulfate: Antimicrobial activity, bioassay and mode of action. Can. J. Microbiol. 15:1067-1076.Google Scholar
  16. 16.
    Tai, Y. H., Feser, J. F., Marnane, W. G., and Desjeux, J. F. 1981. Antisecretory effects of berberine in rat ileum. Am. J. Physiol. 241:G253-G258.Google Scholar
  17. 17.
    Yamamoto, K., Takase, H., Abe, K., Saito, K., and Suzuki, A. 1993. Pharmacological studies on anti-diarrheal effects of a preparation containing berberine and Gerainin herba. Nippon Yakurigaku Zasshi. 101:169-175.Google Scholar
  18. 18.
    Hoshi, A., Ikekawa, T., Ikeda, Y., Shirakawa, S., Ligo, M., Kuretani, K., and Fukoka, F. 1976. Antitumor activity of berberrubine derivatives. Gann. 67:321-325.Google Scholar
  19. 19.
    Zhang, R. X. 1990. Laboratory studies of berberine used alone and in combination with 1,3-bis(2-chloroethyl)-1-nitrosourea to treat malignant brain tumors. Chinese Med. J. 103:658-641.Google Scholar
  20. 20.
    Berlin, G. and Enerback, L. 1983. Fluorescent berberine binding as a marker of secretory activity in mast cells. Int. Arch. Allergy Appl. Immunol. 71:332-339.Google Scholar
  21. 21.
    Taylor, C. T. and Baird, A. W. 1993. Berberine inhibits electrogenic chloride secretion in rat colon in vitro. Br. J. Pharmacol. 110:129.Google Scholar
  22. 22.
    Ckless, K., Schlotiffldt, J. L., Pasoqual, M., Moyna, P., Henriques, J. A. P., and Wajner, M. 1995. Inhibition of in-vitro lymphocyte transformation by the isoquinoline alkaloid berberine. J. Pharm. Pharmacol. 47:1029-1031.Google Scholar
  23. 23.
    Lin, J. G., Chung, J. G., Wu, L. T., Chen, G. W., and Wang, T. F. 1999. Affects of berberine on arylamine N-acetyltransferase activity in human colon tumor cells. Am J Chinese Med. 27:265-275.Google Scholar
  24. 24.
    Chung, J. G., Hung, C. F., Chen, G. W., Chang, H. L., Lin, W. C., Cahng, C. C., and Tsai, H. D. 2000. Affects of berberine on arylamine N-acetyltransferase activity and DNA adduct formation in human leukemia cells. Am J Chinese Med. 28: 227-238Google Scholar
  25. 25.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.Google Scholar
  26. 26.
    Levy, G. N. and Weber, W. W. 1992. 2-Aminofluorene-DNA adducts in mouse urinary bladder: Effect of age, sex and acetylator phenotype. Carcinogenesis 13:159-164.Google Scholar
  27. 27.
    Blum, M., Grant, D. M., McBride, W., Heim, M., and Myere, U. A. 1990. Human arylamine N-acetyltransferase genes: Isolation, chromosomal localization, and functional expression. DNA Cell Biol. 9:193-203.Google Scholar
  28. 28.
    Ebisawa, T. and Deguchi, T. 1991. Structure and restriction fragment length polymorphism of genes for human liver arylamine N-acetyltransferase. Biochem Biophys. Res. Commun. 177:1252-1257.Google Scholar
  29. 29.
    Ponte, P., Ng, S. Y., Engel, J., Gunning, P., and Kedes, L. 1984. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Res. 12:1687-1696.Google Scholar
  30. 30.
    Cleland, W. W. 1967. The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29:1-14.Google Scholar
  31. 31.
    McQueen, C. A., Maslansky, C. J., Glowinski, I. B., Crescenzi, S. B., Weber, W. W., and Williams, G. M. 1982. Relationship between the genetically determined acetylator phenotype and DNA damage induced by hydralazine and 2-aminofluorene in cultured rabbit hepatocytes. Proc. Natl. Acad. Sci. 79: 1269-1272.Google Scholar
  32. 32.
    Zubay, G. L., Parson, W. W., and Vance, D. E. 1995. Principles of Biochemistry, Pages 135-153, Wm. C. Brown Publishers, Pubugue, Iowa.Google Scholar
  33. 33.
    Umemura, T., Tokumo, K., Sima, H., Gebhardt, R., Poirier, M. C., and Williams, G. M. 1993. Dose response effects of 2-acetylaminofluorene on DNA damage, cytotoxicity, cell proliferation and neoplastic conversion in rat liver. Cancer Letts. 73:1-10.Google Scholar
  34. 34.
    Michaels, M. L., Johson, D. L., Reid, T. M., King, C. M., and Romano, L. J. 1987. Evidence for in vitro translesion DNA synthesis past a site-specific aminofluorene adduct. J. Biol. Chem. 262:14648-14656.Google Scholar
  35. 35.
    Einisto, P., Watanabe, M., Ishidate, M., and Nohmi, T. 1991. Mutagenicity of 30 chemicals in S. typhimurium possessing different nitroreductase or O-acetyltransferase activities. Mutation Res. 259:95-102.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • D. Y. Wang
    • 1
  • C. C. Yeh
    • 2
  • J. H. Lee
    • 3
  • C. F. Hung
    • 4
  • J. G. Chung
    • 5
  1. 1.Department of OrthopaedicsChina Medical College HospitalTaichungTaiwan, People's Republic of China
  2. 2.Department of UrologyChina Medical College HospitalTaichungTaiwan, People's Republic of China
  3. 3.Department of SurgeryChina Medical College HospitalTaichungTaiwan, People's Republic of China
  4. 4.Department of SurgeryJen-Ai HospitalTali, TaichungTaiwan, People's Republic of China
  5. 5.Department of MicrobiologyChina Medical CollegeTaichungTaiwan, People's Republic of China

Personalised recommendations