Molecular Biology Reports

, Volume 29, Issue 1–2, pp 187–191 | Cite as

Muscle Oxygenation and ATP Turnover When Blood Flow is Impaired by Vascular Disease

  • GJ Kemp
  • N Roberts
  • WE Bimson
  • A Bakran
  • SP Frostick


31P magnetic resonance spectroscopy (31P MRS) and near-infrared spectroscopy (NIRS) are combined to study interactions between oxidative ATP synthesis rate, perturbation of the creatine kinase equilibrium, and cellular oxygenation state in calf muscle of normal subjects and patients with muscle perfusion impaired by peripheral vascular disease.


Creatine Vascular Disease Creatine Kinase Magnetic Resonance Spectroscopy Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chance B., J.S. Leigh Jr, B.J. Clark, J. Maris, J. Kent, S. Nioka & D. Smith. 1985. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady state analysis of the work/energy cost transfer function. Proc. Natl. Acad. Sci. USA 82: 8384–8388.Google Scholar
  2. Conley, K.E., M.J. Kushmerick & S.A. Jubrias. 1998. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. J. Physiol. 511: 935–945.Google Scholar
  3. Duhaylongsod, F.G., J.A. Greibel, D.S. Bacon, W.G. Wolfe & C.A. Piantadosi. 1993. Effects of muscle contraction on cytochrome a,a3 redox state. J. Appl. Physiol. 75: 790–797.Google Scholar
  4. Harkema, S.J. & R.A. Meyer. 1997. Effect of acidosis on control of respiration in skeletal muscle. Am. J. Physiol. 272: C491-C500.Google Scholar
  5. Haseler, L.J., M.C Hogan & R.S. Richardson. 1999. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J. Appl. Physiol. 86: 2013–2018.Google Scholar
  6. Hogan, M.C., R.S. Richardson & L.J. Haseler. 1999. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P MRS study. J. Appl. Physiol. 86: 1367–1373.Google Scholar
  7. Jeneson, J.A.L., H.V. Westerhoff & M.J. Kushmerick. 2000. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle. Am. J. Physiol. 279: C813-C832.Google Scholar
  8. Jeneson, J.A.L., R.W. Wiseman, H.V. Westerhoff & M.J. Kushmerick, 1996. The signal transduction function for oxidative phosphorylation is at least second order in ADP. J. Biol. Chem. 271: 27995–27998.Google Scholar
  9. Kemp, G.J. 1994. Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle. J. Theor. Biol. 170: 239–246.Google Scholar
  10. Kemp, G.J. 2000. Studying metabolic regulation in human muscle. Biochem. Soc. Trans. 28: 100–103.Google Scholar
  11. Kemp, G.J., D.J. Taylor & G.K. Radda. 1993. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR in Biomed. 6: 302–310.Google Scholar
  12. Kemp, G.J., N. Roberts, W.E. Bimson, A. Bakran, P.L. Harris, G.L. Gilling-Smith, J. Brennan, A. Rankin & S.P. Frostick. 2001. Mitochondrial function and oxygen supply in normal and in chronically ischaemic muscle: a combined 31P magnetic resonance spectroscopy and near infra-red spectroscopy study in vivo. J. Vasc. Surg. 34: 1103–1110.Google Scholar
  13. Korzeniewski B. 1998. Regulation of ATP supply during muscle contraction: theoretical studies. Biochem. J. 330: 1189–1195.Google Scholar
  14. Meyer, R.A. 1988. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am. J. Physiol. 254: C548-C553.Google Scholar
  15. Paganini, A.T., J.M. Foley & R.A. Meyer. 1997. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am. J. Physiol. 272: C501-C510.Google Scholar
  16. Richardson, R.S. 1999. What governs skeletal muscle VO2max? New evidence. Med. Sci. Sports Exerc. 32: 100–107.Google Scholar
  17. Richardson, R.S., J.S. Leigh, Jr., P.D. Wagner & E.A. Noyszewski. 1999. Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. J. Appl. Physiol. 87: 325–331.Google Scholar
  18. Tran, T.K., N. Sailasuta, U. Kreutzer, R. Hurd, Y. Chung, P. Mole, S. Kuno & T. Jue. 1999. Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am. J. Physiol. 276: R1682-R1690.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • GJ Kemp
    • 1
  • N Roberts
    • 2
  • WE Bimson
    • 2
  • A Bakran
    • 3
  • SP Frostick
    • 1
  1. 1.Department of Musculoskeletal ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.MARIARCUniversity of LiverpoolLiverpoolUK
  3. 3.Vascular Unit, Royal LiverpoolUniversity HospitalLiverpoolUK

Personalised recommendations