Plant Ecology

, Volume 163, Issue 1, pp 1–13 | Cite as

Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories

  • P.J. Folgarait
  • S. Perelman
  • N. Gorosito
  • R. Pizzio
  • J. Fernández


Populations of the ant Camponotus punctulatusundergo demographic explosions after agricultural activities, buildingconspicuous, vegetation-covered soil mounds. We investigated the effects ofC. punctulatus on floristic composition and soilpropertiesalong a gradient of agricultural disturbance in Northeastern Argentina. Wesampled vegetation and soil “on” and “off” anthills in,at least, three replicate plots of each of the following situations thatrepresent an increasing gradient of soil disturbance: natural grasslands, sownpastures of Digitaria decumbens, sown pastures ofSetaria sphacelata, and recently abandoned rice fields.Sets of characteristic plant species for each of the land use histories, for“on” and “off” anthills as well as for anthills ofdifferent sizes were identified through Indicator Species Analysis. 64% of thevariation in plant community composition was mainly explained by land-usehistory which was associated to the first 2 axes of a Correspondence Analysisbased on the frequency of 126 species across all sites. At the replicate scale,Correspondence Analyses revealed patterns of plant species composition relatedto the presence and size of anthills. Larger mounds became enriched in species,especially herb weeds, in comparison to smaller mounds or samples gatheredoutside the anthills. A Principal Component Analysis of soil data revealed that71% of the variation in soil properties was explained by the presence ofanthills. Soils from “on” anthills were more fertile than soilsfrom“off” anthills, independent of land-use history. The fertilityeffect of C. punctulatus mounds in addition with thevegetation patterns observed along the gradient of anthill-sizes highlights theimportance of these ants at the landscape and local scales.

Agroecosystems Edaphic changes Formicidae Indicator species Multivariate analysis Succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter P.F. and Hole H. 1967. Ant (Formica cinerea) pedoturbation in a prairie soil. Soil Science Society of America Proceedings 31: 425–428.Google Scholar
  2. Beattie A.J. and Culver D.C. 1977. Effects of the mound of the ant Formica obscuripes on the surrounding soil. The American Midland Naturalist 97: 390–399.Google Scholar
  3. Burkart A. 1969-1978. Flora ilustrada de Entre Ríos (Argentina). Colección Científica del Instituto Nacional de Tecnología Agropecuaria (INTA), Tomo VI.Google Scholar
  4. Carlson S.R. and Whitford W.G. 1991. Ant mound influence on vegetation and soils in a semiarid mountain ecosystem. The American Midland Naturalist 126: 125–139.Google Scholar
  5. Carnevalli R. 1994. Fitogeografía de la provincia de Corrientes, Argentina: Gobierno de la provincia de Corrientes-INTA., Argentina.Google Scholar
  6. Cherret J.M. 1986. The economic importance and control of leaf-cutting ants. In: Vinson S.B. (ed.), Economical Impact and Control of Social Insects. Praegar Special Studies, New York, pp. 165–192.Google Scholar
  7. Culver D.C. and Beattie A.J. 1983. Effects of ant mounds on soil chemistry and vegetation patterns in a Colorado montane meadow. Ecology 64: 485–492.Google Scholar
  8. Czerwinsky Z., Jakubczyk H. and Petal J. 1969. The influence of ants on the genus Myrmica on the physico-chemical and microbiological properties of soil within the compass of anthills in Strzeleckie Meadows. Polish Journal of Soil 2: 51–58.Google Scholar
  9. Daily G.C., Matson P.A. and Vitousek P.M. 1997. Ecosystem services supplied by soil. In: Daily G.C. (ed.), Nature's Services. Societal Dependence on Natural Ecosystems Island Press, Washington, DC, pp. 113–132.Google Scholar
  10. Digby P.G.N. and Kempton R.A. 1987. Multivariate Analysis of Ecological Communities. Chapman & Hall, London.Google Scholar
  11. Dufrene M. and Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  12. Fernández G., Benítez C.A., Royo Pallarés O. and Pizzio R. 1993. Principales forrajeras nativas del medio este de la provincia de Corrientes. In: Estación Experimental Agropecuaria. Mercedes, Corrientes, Argentina Estación Experimental Agropecuaria., Serie Técnica 23.Google Scholar
  13. Folgarait P.J. 1998. Ant's biodiversity and its relationship to ecosystem functioning: a review. Biodiversity & Conservation 7: 1221–1244.Google Scholar
  14. Folgarait P.J., Perelman S., Gorosito N.B. and Pizzio R. 1997. Effect of Camponotus punctulatus ants on plant community composition and soil across land use histories. Ecological Society of America Meeting (ESA), Albuquerque, New Mexico.Google Scholar
  15. Folgarait P.J., Dyer L.A., Marquis R.J. and Braker E. 1996a. Leaf-cutting ant preferences for five native tropical plantation tree species growing under different light conditions. Entomologia Experimentalis et Applicata 80: 521–530.Google Scholar
  16. Gauch H.G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.Google Scholar
  17. Gentry J.B. and Stiritz K.L. 1972. The role of the Florida harvester ant, Pogonomyrmex badius, in oldfield nutrient relationships. Environmental Entomology 1: 39–41.Google Scholar
  18. Ghersa C.M. and León R.J.C. 1999. Successional changes in agroecosystems of the rolling pampa. In: Walker L.R. (ed.), Ecosystems of disturbed ground. Ecosystems of the World Elsevier, Amsterdam, pp. 487–502.Google Scholar
  19. Gorosito N.B., Zipeto G. and Folgarait P.J. 1997. Las preferencias alimenticias de Camponotus punctulatus en pasturas naturales e implantadas. In: XVIII Reunión de la Asociación Argentina de Ecología. Asociación Argentina de Ecología (ASAE), Buenos Aires.Google Scholar
  20. Greig-Smith P. 1983. Quantitative Plant Ecology. 3rd edn. Blackwell, Oxford.Google Scholar
  21. Grubb P.J., Green H.E. and Merrifield R.C.J. 1969. The ecology of chalk heath: its relevance to calcicole-calcifuge and soil acidification problems. Journal of Ecology 57: 175–212.Google Scholar
  22. Haines B.L. 1978. Element and energy flow through colonies of the leaf-cutting ant, Atta colombica, in Panama. Biotropica 10: 270–277.Google Scholar
  23. Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press of Harvard University Press, Cambridge, Massachussets.Google Scholar
  24. Jones C.G., Lawton J.H. and Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.Google Scholar
  25. King T.J. 1977a. The plant ecology of ant-hills in calcareous grasslands. I Patterns of species in relation to ant-hills in Southern England, Journal of Ecology 65: 235–256.Google Scholar
  26. King T.J. 1977b. The plant ecology of ant-hills in calcareous grasslands. II Succession on the mound, Journal of Ecology 65: 257–278.Google Scholar
  27. Kusnezov N. 1951. El género Camponotus punctulatus en la Argentina (Hymenoptera, Formicidae). Acta Zoológica Lilloana 12: 183–252.Google Scholar
  28. Lavelle P.M., Largenell D., Lepage M., Wolters V., Roger P., Ineson P. et al. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33: 159–193.Google Scholar
  29. Lebart L., Morineau A. and Warwick K.M. 1984. Multivariate descriptive statistical analysis. John Wiley & Sons, New York.Google Scholar
  30. Lewis J.P., Franceschi E.A. and Stofella S.L. 1991. Effect of ant-hills on the floristic richness of plant communities of a large depression in the great Chaco. Revista de Biología Tropical 39: 31–39.Google Scholar
  31. Lobry de Bruyn L.A. 1993. Ant composition and activity in naturally-vegetated and farmland environments on contrasting soils at Kellerberrin, Western Australia. Soil Biology and Biochemistry 25: 1043–1056.Google Scholar
  32. Lobry de Bruyn L.A. and Conacher A.J. 1994. The effect of ant biopores on water infiltration in soils in undisturbed bushland and in farmland in a semi-arid environment. Pedobiologia 38: 193–207.Google Scholar
  33. Lockaby B.G. and Adams J.C. 1985. Pedoturbation of a forest soil by fire ants. Soil Science Society of America Journal 49: 220–223.Google Scholar
  34. Lugo A.E., Farnworth E.G., Pool D., Jerez P. and Kaufman G. 1973. The impact of the leaf cutter ant Atta colombica on the energy flow of a tropical wet forest. Ecology 54: 1292–1301.Google Scholar
  35. Mandel R.D. and Sorenson C.J. 1982. The role of harvester ant (Pogonomyrmex occidentalis) in soil formation. Soil Science Society of America Journal 46: 785–788.Google Scholar
  36. Mc Cune B. and Mefford M.J. 1997. PC-ORD. Multivariate analysis of ecological data MjM Software Design, Oregon, Version 3.0.Google Scholar
  37. Mc Gingley M.A., Dhillon S.S. and Neumann J.C. 1994. Environmental heterogeneity and seedling establishment: ant-plant-microbe interactions. Functional Ecology 8: 607–615.Google Scholar
  38. Mc Kinney M.L. and Lockwood J.L. 1999. Biotic homogenisation: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14: 450–452.Google Scholar
  39. Mitchell R.J., Marrs R.H., Le Duc M.G. and Auld H.D. 1997. A study of succession on lowland heaths in Dorset, southern England: changes in vegetation and soil chemical properties. Journal of Applied Ecology 34: 1426–1444.Google Scholar
  40. Motzkin G., Foster D., Allen A., Harrod J. and Boone R. 1996. Controlling site to evaluate history: Vegetation patterns of a New England sand plain. Ecological Monographs 66: 345–365.Google Scholar
  41. Page A.L. 1982. Methods of soils analysis. Part I: Physical and mineralogical methods. Part II: Chemical and microbiological properties, In: Agronomy Series 9. American Society of Agronomy, Madison.Google Scholar
  42. Petal J. 1978. The role of ants in Ecosystems. In: Brian M.U. (ed.), Ecology of Ants and Termites Production. Cambridge University Press, Cambridge, pp. 293–325.Google Scholar
  43. Pickett S.T.A., Collins S.L. and Armesto J.J. 1987. A hierarchical consideration of causes and mechanisms of succesion. Vegetatio 69: 109–114.Google Scholar
  44. Purnell M.F. and Hein N.E. 1969. Serie Técnica 31. Los suelos de la Estación Experimental Agropecuaria de Mercedes, provincia de Corrientes Estación Experimental Agropecuaria INTA-Concepción del Uruguay, Entre Ríos.Google Scholar
  45. Rogers L.E. and Lavigne R.J. 1974. Environmental effects of western harvester ants on the shortgrass plains ecosystem. Environmental Entomology 3: 994–997.Google Scholar
  46. Rosengurtt B. 1949. Praderas naturales: los problemas de su manejo. Revista de la Asociación de Ingenieros Agrónomos 86/87: 3–8.Google Scholar
  47. Salem M. and Hole F. 1968. Ant (Formica exectoides) pedoturbation in a forest soil. Soil Science Society of America 32: 563–567.Google Scholar
  48. Swift M.J., Vandermeer J., Ramakrishan P.S., Anderson J.M., Ong C.K. and Hawkins B.A. 1996. Biodiversity and ecosystem function. In: Mooney H.A., Cushman J.H., Medina E., Sala O.E. and Schulze E.D. (eds), Functional Roles of Biodiversity: A Global Perspective. John Wiley & Sons, New York, pp. 261–298.Google Scholar
  49. Thomas A.S. 1962. Ant hills and termite mounds in pastures. Journal of the British Grassland Society 17: 103–108.Google Scholar
  50. Vilela E.F. 1986. Status of leaf-cutting ant control in forest plantations in Brazil. In: Lofgren C.S. and Vander Meer R.K. (eds), Fire Ants and Leaf-Cutter Ants. Biology and Management Westview Press, Boulder, pp. 399–408.Google Scholar
  51. Wells T.C.E., Sheal J., Ball D.F. and Ward L.K. 1976. Ecological studies on the Porton Ranges: relationships between vegetation, soil, and land-use history. Journal of Ecology 64: 589–626.Google Scholar
  52. Woodell S.R.J. and King T.J. 1991. The influence of mound-building ants on British lowland vegetation. In: Huxley C.H. and Cutler D.F. (eds), Ant-Plant Interactions. Oxford University Press, Oxford, pp. 521–535.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • P.J. Folgarait
    • 1
  • S. Perelman
    • 2
  • N. Gorosito
    • 3
  • R. Pizzio
    • 4
  • J. Fernández
    • 4
  1. 1.Unidad de Investigación en Interacciones Biológicas, Centro de Estudios e InvestigacionesUniversidad Nacional de QuilmesBuenos Aires, BernalArgentina
  2. 2.IFEVA, Facultad de ArognomíaUniversidad de Buenos AiresCapital FederalArgentina
  3. 3.Unidad de Investigación en Interacciones Biológicas, Centro de Estudios e InvestigacionesUniversidad Nacional de QuilmesBuenos Aires, BernalArgentina
  4. 4.Estación Experimental INTA-MercedesMercedesArgentina

Personalised recommendations