International Journal of Primatology

, Volume 19, Issue 1, pp 165–194 | Cite as

How Precisely Do Bonobos (Pan paniscus) Grasp Small Objects?

  • Marianne I. Christel
  • Stefanie Kitzel
  • Carsten Niemitz


The general objective of this study was to compare the precise grasping behavior and intermanual differences in performance between three Pan paniscus and five Homo sapiens in grasping small objects. We compared the temporal pattern of two submovements of consecutive grasping cycles, the (visuomotor) reaching and the (sensorimotor) grasping. Both species were similarly successful in this task, they showed a behavioral right-hand preference and preferred specific types of grips. Bonobos required less time for reaching an object but a much longer time to grasp it than humans did. Thus, the species pursued different strategies. We assumed that this might be due to the different grip techniques. However, grip preferences did not serve a quicker intramanual performance but they pronounced differences between hands. Intermanual differences in timing were restricted to the reaching part and more strongly in bonobos than in humans. However, the right hand need not necessarily perform quicker. As in the case of humans, we assume that attentional cues were focused more on preparing a proper grip with the right hand than on a quick performance. However, strong intermanual differences in bonobos may indicate an overall stronger neuronal asymmetry in the motor organization of the finger musculature that prepare a proper grip than is true of humans.

Pan paniscus Homo sapiens temporal pattern of reach-to-grasp movements hand preferences asymmetry in performances precision grips 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annett, M. (1992). Five tests of hand skill. Cortex 28: 583-600.Google Scholar
  2. Arbib, M. A., Iberall, T., and Lyons D. (1985). Coordinated control programs of movements of the hand. In Goodwin, A. W., and Darian-Smith, I. (eds.), Hand Function and Neocortex. (Exp. Brain Res., Suppl. 10), Springer, Berlin, Heidelberg, New York, pp. 111-129.Google Scholar
  3. Boesch, C. (1991). Handedness in wild chimpanzees. Int. J. Primatol. 12: 541-558.Google Scholar
  4. Boesch, C., and Boesch, H. (1993). Different hand postures for pounding nuts with natural hammers by wild chimpanzees. In Preuschoft, H., and Chivers, D. J. (eds.), Hands of Primates. Springer, Wien, New York, pp. 91-108.Google Scholar
  5. Bortoff, G. A., and Strick, P. L. (1993). Corticospinal terminations in two new-world primates: Further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J. Neurosci. 13(12): 5105-5118.Google Scholar
  6. Brinkman, C. (1984). Supplementary motor area of monkey's cerebral cortex: Short and long term deficits after unilateral ablation and the effects of subsequent callosal section. J. Neurosci. 4: 918-929.Google Scholar
  7. Brinkman, J., and Kuypers, H. G. J. M. (1973). Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 96: 653-674.Google Scholar
  8. Byrne, R. W., and Byrne, J. M. (1991). Complex leaf-gathering skills of mountain gorillas (Gorilla g. beringei): Variability and standardization. Am. J. Primatol. 31(4): 241-261.Google Scholar
  9. Christel, M. (1993a). Grasping techniques and hand preferences in hominoidea. In Preuschoft, H., and Chivers, D. J. (eds.), Hands of Primates, Springer, Wien, New York, pp. 91-108.Google Scholar
  10. Christel, M. (1993b). Greiftechniken und Handpräferenzen verschiedener catarrhiner Primaten beim Aufnehmen kleiner Objekte, Inaugural dissertation, FU Berlin.Google Scholar
  11. Christel, M. I. (1994). Catarrhine primates grasping small objects—techniques and hand preferences. In Anderson, J. R., Roeder, J. J., Thierry, B., and Herrenschmidt, N. (eds.), Curr. Primatol., Vol. III. Behav. Neurosc. Physiol. Reprod., Université L. Pasteur, Strasbourg, pp. 37-50.Google Scholar
  12. Colell, M., Segarra, M. D., and Sabater-Pi, J. (1995). Manual laterality in chimpanzees (Pan troglodytes) in complex tasks. J. Comp. Psychol. 109(3): 298-307.Google Scholar
  13. Corballis, M. C. (1991). The Lopsided Ape: Evolution of the Generative Mind, Oxford University Press.Google Scholar
  14. Darian-Smith, I., Galea, M. P., Darian-Smith, C., Sugitani, M., Tan, A., and Burman, K. (1996). In Beck, F., Kriz, W., Sano, Y., and Schiebler, T. H. (eds.), Advances in Anatomy Embryology and Cell Biology 133, Springer, Melbourne, Heidelberg, Kyoto, Würzburg.Google Scholar
  15. Day, M. H., and Napier, J. R. (1963). The functional significance of the head of the Flexor pollicis brevis in primates. Folia Primatol. 1: 122-134.Google Scholar
  16. Demes, B. (1991). Biomechanische Allometrie: Wie die Körpergröße Fortbewegung und Körperform von Primaten bestimmt. Cour. Forsch.-Inst. Senckenberg, Frankfurt.Google Scholar
  17. Fagot, J., and Vauclair, J. (1991). Manual laterality in nonhuman primates: A distinction between handedness and manual specialization. Psychol. Bull., 109: 76-89.Google Scholar
  18. Fisk, J. D., and Goodale, M. A. (1985). The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp. Brain Res. 60: 159-178.Google Scholar
  19. Finch, G. (1941). Chimpanzee handedness. Science 94: 117-118.Google Scholar
  20. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of the movement. J. Exp. Psychol. 47: 381-391.Google Scholar
  21. Heffner, R., and Masterton, B. (1975). Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 12(3): 161-200.Google Scholar
  22. Hopkins, W. D. (1993). Posture and reaching in chimpanzees (Pan troglodytes) and orangutans (Pongo pygmaeus). J. Comp. Psych. 102: 248-250.Google Scholar
  23. Hopkins, W. D., and de Waal, F. B. M. (1995). Behavioral laterality in captive chimpanzees (Pan paniscus): Replication and extension. Int. J. Primatol. 16: 261-276.Google Scholar
  24. Hopkins, W. D., and Morris, R. D. (1993). Handedness in great apes: A review of findings. Int. J. Primatol. 14: 1-25.Google Scholar
  25. Hopkins, W. D., Bennett, A. J., Bales, S. L., Lee, J., and Ward, P. J. (1993). Behavioral laterality in captive bonobos (Pan paniscus). J. Comp. Psych. 107(40): 403-420.Google Scholar
  26. Igmanson, E. J. (1996). Hand-use preference among Pan paniscus at Wamba, Zaire. AAPA abstracts. Am. J. Phys. Anthropol. 22: 129.Google Scholar
  27. Jeannerod, M. (1984). The timing of natural prehension movements. J. Motiv. Behav. 16(3): 235-254.Google Scholar
  28. Jeannerod, M., Arbib, M. A., Rizzolatti, G., and Sakata, H. (1995). Grasping objects: The cortical mechanisms of visuomotor transformation. TINS 18(7): 314-320.Google Scholar
  29. Jones-Engel, L., and Bard, K. A. (1996). Precision grips in young chimpanzees. Am. J. Primatol. 39(2): 1-15.Google Scholar
  30. Kazennikov, O., Wicki, U., Corboz, M., Hyland, B., Palmeri, A., Rouiller, E. M., and Wiesendanger, M. (1994). Temporal structure of a bimanual goal-directed movement sequence in monkeys. Eur. J. Neurosci. 6: 203-210.Google Scholar
  31. Keele, S. W. (1968). Movement control in skilled motor performance. Psychol. Bull. 70: 387-404.Google Scholar
  32. Kuypers, H. G. J. M. (1981). The anatomy of the descending pathways. In Brooks, V. B. V., Brookhart, J. M., and Mountcastle, J. M. (eds.), Handbook of Physiology, Section 1. The Nervous System II (2), Am. Physiol. Society, Bethesda, MD, pp. 597-666.Google Scholar
  33. Lehman, R. A. W. (1970). Hand preference and cerebral predominance in 24 rhesus monkeys. J. Neurol. Sci. 10: 185-192.Google Scholar
  34. LeMay, M. (1985). Asymmetries of the brains and skulls of nonhuman primates. In Glick, S. D. (ed.), Cerebral Lateralization in Nonhuman Species, Academic Press, New York, pp. 223-245.Google Scholar
  35. MacNeilage, P., Studdert-Kennedy, M. G., and Lindblom, B. (1987). Primate handedness reconsidered. Behav. Brain Sci. 10: 247-263.Google Scholar
  36. Marchant, L. F., and McGrew, W. C. (1991). Laterality of function in apes: A meta-analysis of methods. J. Hum. Evol. 21: 425-438.Google Scholar
  37. Marchant, L. F., and Steklis, H. D. (1986). Hand preference in a captive island group of chimpanzees (Pan troglodytes). Am. J. Primatol. 10: 301-313.Google Scholar
  38. Marzke, M. (1997). Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102: 91-110.Google Scholar
  39. Marzke, W. M., and Wullstein, K. L. (1996). Chimpanzee and human grips: A new classification with a focus on evolutionary morphology. Int. J. Primatol. 17: 117-139.Google Scholar
  40. Muir, R. B. (1985). Small hand muscles in precision grip: A corticospinal prerogative. In Goodwin, A. W., and Darian-Smith, I. (eds.), Hand Function and Neocortex, Exp. Brain Res. Suppl. 10, Springer, Berlin, New York, pp. 155-174.Google Scholar
  41. Napier, J. R. (1956). The prehensile movements of the human hand. J. Bone Joint Surg. Am. 38B: 902-913.Google Scholar
  42. Napier, J. R. (1962). The evolution of the hand. Sci. Am. 12: 49-55.Google Scholar
  43. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.Google Scholar
  44. Pause, M., Kunesch, E., Binkofski, F., and Freund, H.-J. (1989). Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112: 1599-1625.Google Scholar
  45. Porter, R., and Lemon, R. (1993). Corticospinal function and voluntary movement. Monographs of the Physiological Society 45, Clarendon Press, Oxford.Google Scholar
  46. Preuschoft, H. (1973). Functional anatomy of the upper extremity. In Bourne, G. H. (ed.), The Chimpanzee (6), Karger, Basel, Baltimore, pp. 34-115.Google Scholar
  47. Sprankel, H., and Lorenz, R. (1984). P. troglodytes, Ergreifen kleiner Objekte, Film E 1796, Publ. Inst. Wiss. Film (IWF), Göttingen.Google Scholar
  48. Susman, R. L. (1988). Hand of Paranthropus robustus from Member 1, Swartkrans: Fossil evidence for tool behavior. Science 240: 781-783.Google Scholar
  49. Susman, R. (1995). Thumbs, tools, and early humans. Science 268: 586-589.Google Scholar
  50. Sugiyama, Y., Fushimi, T., Sakura, O., and Matsuzawa, T. (1993). Hand preference and tool use in wild chimpanzees. Primates 34(2): 151-159.Google Scholar
  51. Tonooka, R., and Matsuzawa, T. (1995). Hand preferences of captive chimpanzees (Pan troglodytes) in simple reaching for food. Int. J. Primatol. 16(1): 17-35.Google Scholar
  52. Tuttle, R. H. (1965). A Study of the Chimpanzee Hand with Comments on Hominoid Evolution, University of California, Berkeley, University Microfilm, Ann Arbor, MI.Google Scholar
  53. Tuttle, R. H. (1967). Knuckle-walking and the evolution of hands. Am. J. Phys. Anthropol. 26: 171-296.Google Scholar
  54. Vieeschouwer, De K., Van Elsacker, L., and Verheyen, R. F. (1995). Effect of posture on hand preferences during experimental food reaching in bonobos (Pan paniscus). J. Comp. Psychol. 109(2): 203-207.Google Scholar
  55. Wang, X., Merzenich, M. M., Sameshima, K., and Jenkins, W. M. (1995). Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378: 71-75.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Marianne I. Christel
    • 1
  • Stefanie Kitzel
    • 1
  • Carsten Niemitz
    • 1
  1. 1.FB Biology, Department of AnthropologyFree University of BerlinBerlinGermany

Personalised recommendations