, Volume 127, Issue 3, pp 353–365

PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.)

  • Inga C. Bach
  • Annette Olesen
  • Philipp W. Simon


Cytoplasmic male sterility (CMS) is essential for the development of highly adapted and uniform hybrid varieties of carrot and other crops. The most widely used type of CMS in carrot is petaloidy, in which the stamens are replaced by petals or bract-like structures. We have developed a series of mitochondria-specific PCR markers to distinguish cytoplasms inducing petaloidy (Sp) and male-fertility (N). The markers target the atp1,atp6, atp9, orfB (atp8), nad6 and cob loci from the mitochondrial genomes of a diverse collection of male fertile and petaloid carrots. We report 14 primer pairs that amplify marker fragments from either Sp or N cytoplasms and three primer pairs that amplify fragments with length polymorphism. The amplification products span sites of insertions, deletions or recombinations adjacent to or within the coding regions of the targeted genes. The markers reported here are useful tools to identify the type of cytoplasm in cultivated carrot and to evaluate variation in the mitochondrial genomes within the genus Daucus.

Daucus carota mitochondria CMS petaloidy PCR-markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.PubMedCrossRefGoogle Scholar
  2. Bach, I.C., O.M. Madsen & A Olesen, 1997. Production of a mapping population by protoplast fusion for the localisation of CMS-genes in carrot. J Appl Genet 38A: 178–185.Google Scholar
  3. Banga O., J. Petiet & J.L. van Bennekom, 1964. Genetic analysis of male-sterility in carrot. Euphytica 13: 75–93.CrossRefGoogle Scholar
  4. Bellaoui M., A. Martin-Canadell, G. Pelletier & F. Budar F, 1998. Low copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257: 177–185.PubMedCrossRefGoogle Scholar
  5. Bergman P. W. Kofer, G. Håkansson & K. Glimelius, 1995. A chimeric and truncated mitochondrial atpA gene is transcribed in alloplasmic cytoplasmic male-sterile tobacco with Nicotiana bigelovii mitochondria. Theor Appl Genet 91: 603–610.CrossRefGoogle Scholar
  6. Bowes, C.E. & D.J. Wolyn, 1998. Phylogenetic relationships among fertile and petaloid male sterile accessions of carrot, Daucus carota L. Theor Appl Genet 96: 928–932.CrossRefGoogle Scholar
  7. Glimelius, K., M. Hernould & P. Bergman, 1995. Mitochondrial regulation of petal and stamen development in cytoplasmic male sterile cultivars of Nicotiana tabacum. In: M. Terzi, R. Cella & A. Falavigna (Eds.), Current Issues in Plant Molecular and Cellular Biology, pp. 219-224. Kluwer Academic Publishers.Google Scholar
  8. Gray, M.W., B.F. Lang, R. Cedergren, G.B. Golding, C. Lemieux, D. Sankoff, M. Turmel, N. Brossard, E. Delage, T.G. Littlejohn, I. Plante, P. Rioux, D. Saint-Louis, Y. Zhu & G. Burger, 1998. Genome structure and gene content in protist mitochondrial DNA. Nucleic Acids Res 26: 865–878.PubMedCrossRefGoogle Scholar
  9. Gualberto, J.M., G. Bonnard, L. Lamattina & J.M. Grienenberger, 1991. Expression of the wheat mitochondrial nad3-rps12 transcription unit: Correlation between editing and mRNA maturation. Plant Cell 3: 1109–1120.PubMedCrossRefGoogle Scholar
  10. Hernould, M., S. Suharsono, S. Litvak, A. Araya & A. Mouras, 1993. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90: 2370–2374.PubMedCrossRefGoogle Scholar
  11. Lin, X.Y., S.S. Kaul, S. Rounsley, T.P. Shea, M.I. Benito, C.D. Town, C.Y. Fujii, T. Mason, C.L. Bowman, M. Barnstead, T.V. Feldblyum, C.R. Buell, K.A. Ketchum, J. Lee, C.M. Ronning, H.L. Koo, K.S. Moffat, L.A. Cronin, M. Shen, G. Pai, S. Van Aken, L. Umayam, L.J. Tallon, J.E. Gill, M.D. Adams, A.J. Carrera, T.H. Creasy, H.M. Goodman, C.R. Somerville, G.P. Copenhaver, D. Preuss, W.C. Nierman, O. White, J.A. Eisen, S.L. Salzberg, C.M. Fraser & J.C. Venter, 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.PubMedCrossRefGoogle Scholar
  12. Linke, B., T. Nothnagel & T. Borner, 1999. Morphological characterization of modified flower morphology of three novel alloplasmic male sterile carrot sources. Plant Breeding 118: 543–548.CrossRefGoogle Scholar
  13. Marchfelder, A., S. Binder, A. Brennicke & W. Knoop, 1998. RNA editing by base conversion in plant organellar DNA. In: H. Grosjean & R. Benne (Eds.), Modification and Editing of RNA, pp. 307–323. ASM Press, Washington D.C.Google Scholar
  14. Martin, W. & R.G. Herrmann, 1998. Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118: 9–17.PubMedCrossRefGoogle Scholar
  15. McCollum, G.D., 1966. Occurrence of petaloid stamens in wild carrot (Daucus carota) from Sweden. Economic Botany 20: 361–367.Google Scholar
  16. Morelock, T.E., P.W. Simon & C.E. Peterson, 1996. Wisconsin Wild: Another petaloid male-sterile cytoplasm for carrot. HortSci 31: 887–888.Google Scholar
  17. Mulligan, R.M., M.A. Williams & M.T. Shanahan, 1999. RNA editing site recognition in higher plant mitochondria. J Heredity 90: 338–344.CrossRefGoogle Scholar
  18. Murray, M.G. & W.F. Thompson, 1980. Rapid isolation of highmolecular-weight plant DNA. Nucleic Acids Res 8: 4321–4325.PubMedGoogle Scholar
  19. Nakajima Y., T. Yamamoto, T. Muranaka & K. Oeda, 1999. Genetic variation of petaloid male-sterile cytoplasm of carrot revealed by sequence tagged sites (STSs). Theor Appl Genet 99: 837–843.CrossRefGoogle Scholar
  20. Nothnagel, T., P. Straka & B. Linke, 2000. Male sterility in populations of Daucus and the development of alloplasmic male-sterile lines of carrot. Plant Breeding 119: 145–152.CrossRefGoogle Scholar
  21. Pingitore, M., B. Matthews & J.P. Bottino, 1989. Analysis of the mitochondrial genome of Daucus carota with male sterile and male fertile cytoplasm. J Heredity 80: 143–145.Google Scholar
  22. Ronfort, J., P. Saumitou-Laprade & J. Cuguen, 1995. Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp carota. Theor Appl Genet 91: 150–159.CrossRefGoogle Scholar
  23. Sambrook, J., E. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Scheike, R., E. Gerold, A. Brennicke, M. Mehring-Lemper & G. Wricke, 1992. Unique patterns of mitochondrial genes, transcripts and proteins in different male-sterile cytoplasma of Daucus carota. Theor Appl Genet 83: 419–427.CrossRefGoogle Scholar
  25. Schnable, P.S. & R.P. Wise, 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science 3: 175–180.CrossRefGoogle Scholar
  26. Schuster, W., R. Hiesel, B. Wissinger, W. Schobel & A. Brennicke, 1988. Isolation and analysis of plant mitochondria and their genomes. In: C. Shaw (Ed.), Plant Molecular Biology. A Practical Approach, pp. 79–102. IRL Press. Oxford. Washington DC.Google Scholar
  27. Small, I.D., P.G. Isaac & C.J. Leaver, 1987. Stoichiometric differences in DNA molecules containing the atpA gene suggests mechanisms for the generation of mitochondrial diversity in maize. EMBO J 6: 865–869.PubMedGoogle Scholar
  28. Steinborn, R.A., A. Weihe & T. Börner, 1992. Mitochondrial genome diversity within a cultivar of Daucus carota (ssp. sativus) revealed by restriction fragment analysis of single plants. Plant Breeding 109: 75–77.CrossRefGoogle Scholar
  29. Szklarczyk, M., 1997. Unique features of carrot mtDNAs from CMS and maintainer lines. J Appl Genet 38A: 42–56.Google Scholar
  30. Szklarczyk, M., M. Oczkowski, H. Augustyniak, T. Börner, B. Linke & B. Michalik, 2000. Organisation and expression of mitochondrial atp9 genes from CMS and fertile carrots. Theor Appl Genet 100: 263–270.CrossRefGoogle Scholar
  31. Thompson, D.J., 1961. Studies on the inheritance of male-sterility in the carrot, Daucus carota L. var. sativa. Proc Amer Soc Hort Sci 78: 332–338.Google Scholar
  32. Unseld, M., J.R. Marienfeld, P. Brandt & A. Brennicke, 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet 15: 57–61.PubMedCrossRefGoogle Scholar
  33. Vivek, B.S., Q.A. Ngo & P.W. Simon, 1999. Evidence for maternal inheritance of the chloroplast genome in cultivated carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 98: 669–672.CrossRefGoogle Scholar
  34. Vivek, B.S. & P.W. Simon, 1999. Phylogeny and relationships in Daucus based on restriction fragment length polymorphisms (RFLPs) of the chloroplast and mitochondrial DNA. Euphytica 105: 183–189.CrossRefGoogle Scholar
  35. Welch, J.E. & E.L. Grimball, 1947. Male sterility in carrot. Science 106: 594.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Inga C. Bach
    • 1
  • Annette Olesen
    • 1
  • Philipp W. Simon
    • 2
  1. 1.Department of Agricultural Sciences, Plant Breeding and Crop ScienceThe Royal Veterinary and Agricultural UniversityFrederiksberg C, CopenhagenDenmark
  2. 2.United States Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations