Advertisement

Molecular Breeding

, Volume 10, Issue 1–2, pp 11–18 | Cite as

Multiple virus resistance in transgenic plants conferred by the human dsRNA-dependent protein kinase

  • Pyung Ok Lim
  • Ung Lee
  • Jong Sang Ryu
  • Jang Kyung Choi
  • Ara Hovanessian
  • Cheol Soo Kim
  • Baik Ho Cho
  • Hong Gil Nam
Article

Abstract

We have developed a new strategy for engineering resistance to multipleviruses in plants. The strategy exploits the human double stranded (ds)RNA-dependent protein kinase (PKR). PKR is one of theinterferon-induced enzymes. It confers viral resistance in mammals byinhibitingviral replication through the inactivation of the translational initiationfactor, eIF-2α, upon activation by dsRNA. The humanPKR gene was fused to the promoter of theArabidopsis blue copper binding protein gene(BCB) that is induced rapidly in response to wounding. Thechimeric gene cassette was introduced into tobacco plants. Expression of thePKR gene in transgenic tobacco plants was demonstrated byRNA gel blot analysis and autophosphorylation assay of anMr 68,000 protein. The transgenic plantsexpressing the PKR gene showed significantly reduced viralsymptoms or no viral symptoms at all, when challenged by different plant RNAviruses, such as Cucumber mosaic virus, Tobaccoetch virus, or Potato virus Y. Thus, expressionof a single component in the human interferon pathway, thePKR gene, can effectively confer resistance to multipleviruses in transgenic plants.

Antiviral protein dsRNA-dependent protein kinase PKR Multiple resistance Plant biotechnology Plant viruses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel P.P., Nelson R.S., De B., Hoffmann N., Rogers S. and Beach R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743.PubMedGoogle Scholar
  2. An G., Ebert P.R., Mitra A. and Ha S.B. 1988. Binary vectors. In: Gelvin S.B., Schiperoort R.A. and Verma D.P.S. (eds), Plant Molecular Biology Manual. Kluwer Academic publishers, Dordrecht, pp. A3/1-A3/19.Google Scholar
  3. Anderson E.J., Stark D., Nelson R.S., Tumer N.E. and Beach R.N. 1989. Transgenic plants that express coat protein genes of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some nonrelated viruses. Phytopathology 79: 1284-1290.Google Scholar
  4. Chong K.L., Feng L., Schappert K., Meurs E., Donahue T.F., Friesen J.D. et al. 1992. EMBO J. 11: 1553-1562.PubMedGoogle Scholar
  5. Crum C.J., Hu J., Hiddinga H.J. and Roth D.A. 1988. Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity. J. Biol. Chem 263: 13440-13443.PubMedGoogle Scholar
  6. Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant DNA minipreparation: version2. Plant Mol. Biol. Rep 1: 19-21.Google Scholar
  7. Gerlach W.L., Llewellyn D. and Haseloff J. 1987. Construction of a plant disease resistance gene from the satellite RNA of tobacco ring spot virus. Nature 328: 802-805.Google Scholar
  8. Golemboski D.B., Lomonossof G.P. and Zaitlin M. 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87: 6311-6315.PubMedGoogle Scholar
  9. Harrison B.D., Mayo M.A. and Baulcombe D.C. 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328: 799-802.Google Scholar
  10. Hemenway C., Fang R.X., Kaniewski W.K., Chua N.H. and Tumer N. 1988. Analysis of the mechanism of cross protection in plants expressing potato virus X coat protein or its antisense RNA. EMBO J. 7: 1273-1280.Google Scholar
  11. Hiddinga H.J., Crum C.J. and Roth D.A. 1988. Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science 241: 451-453.PubMedGoogle Scholar
  12. Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G. and Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229-1231.Google Scholar
  13. Langland J.O., Jin S., Jacobs B.L. and Roth D.A. 1995. Identification of a plant-encoded analog of PKR, the mammalian doublestranded RNA-dependent protein kinase. Plant Physiol. 108: 1259-1267.PubMedGoogle Scholar
  14. Langland J.O., Langland L.A., Browning K.S. and Roth D.A. 1996. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J. Biol. Chem. 271: 4539-4544.PubMedGoogle Scholar
  15. Lengyel P. 1993. Tumor-suppressor genes: News about the interferon connection. Proc. Natl. Acad. Sci. USA 90: 5893-5895.PubMedGoogle Scholar
  16. Lim P.O., Ryu J.S., Lee H.J., Lee U., Park Y.S., Kwak J.M. et al. 1997. Resistance to tobamoviruses in transgenic tobacco plants expressing the coat protein gene of pepper mild mottle virus (Korean isolate). Mol. Cells 7: 313-319.PubMedGoogle Scholar
  17. Lindbo J.A. and Dougherty W.G. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725-733.CrossRefPubMedGoogle Scholar
  18. Lodge J., Kaniewki W.K. and Tumer N.E. 1993. Broad spectrum virus resistance in transgenic plants expressing pokewood antiviral protein. Proc. Natl. Acad. Sci. USA 90: 7089-7093.PubMedGoogle Scholar
  19. Masuta C., Tanaka H., Uehara K., Kuwata S., Koiwai A. and Noma M. 1995. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in Sadenosylmethionin-dependent transmethylation reaction. Proc. Natl. Acad. Sci 92: 6117-6121.PubMedGoogle Scholar
  20. Meurs E., Chong K., Galabru J., Thomas N.S.B., Kerr I.M., Williams B.R.G. et al. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62: 379-390.PubMedGoogle Scholar
  21. Mitra A., Higgins D.A., Langenberg W.G., Nie H., Sengupta D.N. and Silverman R.H. 1996. A mammalian 2-5A system functions as an antiviral pathway in transgenic plants. Proc. Natl. Acad. Sci. 93: 6780-6785.PubMedGoogle Scholar
  22. Park Y.S., Song O.K., Hong S.W., Kwak J.M., Cho M.J. and Nam H.G. 1994. Functional complementation of a yeast vesicular transport mutation ypt1-1 by a Brassica napus cDNA clone encoding a small GTP-binding protein. Plant Mol. Biol. 26: 1725-1735.PubMedGoogle Scholar
  23. Roth D.A. and He X. 1994. Viral-dependent phosphorylation of a dsRNA-dependent kinase. In: Muller W.E.G. and Schroder H.C. (eds), Biological Response Modifiers-Interferons, Double-Stranded RNA and 2',5'-Oligoadenylates. Springer, Berlin, Heidelberg, New York, pp. 28-47.Google Scholar
  24. Sano H. and Ohashi Y. 1995. Involvement of small GTP-binding proteins in defense signal transduction pathways of higher plants. Proc. Natl. Acad. Sci 92: 4138-4144.PubMedGoogle Scholar
  25. Thomis D.C. and Samuel C.E. 1992. Mechanism of interferon action: autoregulation of RNA-dependent P1/eIF-2 alpha protein kinase (PKR) expression in transfected mammalian cells. Proc. Natl. Acad. Sci. 89: 10837-10841.PubMedGoogle Scholar
  26. Van Gysel A., Van Montagu M. and Inze D.A. 1993. Negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene. 136: 79-85.PubMedGoogle Scholar
  27. Van Regenmortel M.H.V. and Dubs M.C. 1993. Serological procedures. In: Mattews R.E.F. (ed.), Diagnosis of Plant Virus Disease. CRC, Boca Raton, FL, USA, pp. 159-213.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Pyung Ok Lim
    • 1
  • Ung Lee
    • 1
  • Jong Sang Ryu
    • 1
  • Jang Kyung Choi
    • 2
  • Ara Hovanessian
    • 3
  • Cheol Soo Kim
    • 1
  • Baik Ho Cho
    • 4
  • Hong Gil Nam
    • 1
  1. 1.Division of Molecular and Life SciencesPohang University of Science and TechnologyKyungbukKorea
  2. 2.Department of Agricultural BiologyKangwon National UniversityChunchonKorea
  3. 3.Institute PasteurUnite d'Oncologie Virale-URA CNRSParisFrance
  4. 4.College of AgricultureChonnam National UniversityKwangjuKorea

Personalised recommendations