Advertisement

Biogeochemistry

, Volume 61, Issue 1, pp 37–55 | Cite as

Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM)

  • Helmut Fischer
  • Susanne C. Wanner
  • Martin Pusch
Article

Abstract

The major proportion of heterotrophic activity in running waters islocalized on the solid surfaces of sediments in the benthic and hyporheic zoneand is dominated by microorganisms. However, this assertion is based on thestudies of small streams, and little is known about the microbial metabolism oforganic matter in river ecosystems. We therefore explored the relationshipsbetween bacterial abundance and production and the gradients of organic matterquality and quantity in sediments of a sixth-order lowland river (Spree,Germany). We found vertical gradients of detrital variables (particulateorganicmatter (POM), particulate organic carbon (POC), nitrogen (PN), and protein) andof bacterial variables (abundance, production, turnover time, and proportion ofbacterial carbon in total POC) in two different sediment types. These gradientswere steeper in stratified sediments than in the shifting sediments. Detritalvariables correlated strongly with bacterial abundance and production. The bestcorrelation was found for detrital variables indicating substrate quantity andquality (rS = 0.90 for PN with abundance). Although bacterialbiomasscomprised only 0.7% of the POC (1.9% of PN, 3.4% of the protein) in sediments,the turnover of sedimentary organic carbon was fast (median = 62d), especially in the shifting sediments. Our findings demonstratethat sediment dynamics significantly foster organic carbon metabolism in riversystems. Thus, these sediments, which are typical for lowland rivers, stronglyinfluence the metabolism of the whole ecosystem.

Bacterial production C/N ratio Particulate organic matter (POM) Protein River Sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrendt H. 1990. The chemical composition of phytoplankton and zooplankton in an eutrophic shallow lake. Arch. Hydrobiol. 118: 129-145.Google Scholar
  2. Benner R.,Lay J.,K'nees E. andHodson R.E. 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food webs. Limnol. Oceanogr. 33: 1514-1526.Google Scholar
  3. Bonin H.L.,Griffiths R.P. andCaldwell B.A. 2000. Nutrient and microbiological characteristics of fine benthic organic matter in mountain streams. J. N. Am. Benthol. Soc. 19: 235-249.Google Scholar
  4. Boon A.R. andDuineveld G.C.A. 1996. Phytopigments and fatty acids as molecular markers for the quality of near-bottom particulate organic matter in the North Sea. J. Sea Res. 35: 279-291.Google Scholar
  5. Borchardt M.A. andBott T.L. 1995. Meiofaunal grazing of bacteria and algae in a Piedmont stream. J. N. Am. Benthol. Soc. 14: 278-298.Google Scholar
  6. Brunke M. andFischer H. 1999. Hyporheic bacteria-relationships to environmental gradients and invertebrates in a prealpine stream. Arch. Hydrobiol. 146: 189-217.Google Scholar
  7. Buchsbaum R.,Valiela I.,Swain T.,Dzierzeski M. andAllen S. 1991. Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae. Mar. Ecol. Prog. Ser. 72: 131-143.Google Scholar
  8. Caron D.A. 1987. Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13: 203-218.Google Scholar
  9. Chróst R.J. (ed.) 1991. Microbial Enzymes in Aquatic Environments. Springer Verlag, New York.Google Scholar
  10. Cowie G.L. andHedges J.I. 1994. Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature 369: 304-307.Google Scholar
  11. Deutsche Einheitsverfahren 1985. Deutsche Einheitsverfahren zur Wasser-, Abwasser-und chlammuntersuchung. DIN 38412, Teil 16 (1996). Verlag Chemie, Weinheim.Google Scholar
  12. Edwards R.T.,Meyer J.L. andFindlay S.E.G. 1990. The relative contribution of benthic and suspended bacteria to system biomass, production, and metabolism in a low-gradient blackwater river. J. N. Am. Benthol. Soc. 6: 241-250.Google Scholar
  13. Eisenmann H.,Harms H.,Meckenstock R.,Meyer E.I. andZehnder A.J.B. 1998. Grazing of a Tetrahymena sp. on adhered bacteria in percolated columns monitored by in situ hybridization with fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 64: 1264-1269.Google Scholar
  14. Enriquez S.,Duarte C.M. andSand-Jensen K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94: 457-471.Google Scholar
  15. Fenchel T. 1991. Flagellate design and function. In: Patterson D.J. andLarsen J. (eds), The Biology of Free Living Heterotrophic Flagellates. Clarendon Press, Oxford, 7-19.Google Scholar
  16. Fenchel T.,King G.M. andBlackburn T.H. 1998. Bacterial Biogeochemistry. Academic Press, San Diego.Google Scholar
  17. Fiebig D.M. andLock M.A. 1991. Immobilization of dissolved organic matter from groundwater discharging through the streambed. Freshwat. Biol. 26: 45-55.Google Scholar
  18. Findlay S. andSobczak W.V. 2000. Microbial communities in hyporheic sediments. In: Jones J.B. andMulholland P. (eds), Streams and Ground Waters. Academic Press, San Diego, 287-306.Google Scholar
  19. Fischer H. andPusch M. 1999. Use of the [14C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton. Appl. Environ. Microbiol. 65: 4411-4418.Google Scholar
  20. Fischer H. andPusch M. 2001. Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwat. Biol. 46: 1335-1348.Google Scholar
  21. Fischer H.,Sachse A.,Steinberg C.E.W. andPusch M. 2002. Differential retention of dissolved organic carbon (DOC) by a bacterial community in river sediments. (submitted).Google Scholar
  22. Fry J.C. 1988. Determination of biomass. In: Austin B. (ed.), Methods in Aquatic Bacteriology. Wiley, Chichester, 27-72.Google Scholar
  23. Fuss C.L. andSmock L.A. 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwat. Biol. 36: 339-349.Google Scholar
  24. Giere O. 1993. Meiobenthology. Springer, Berlin.Google Scholar
  25. Goldman J.C.,Caron D.A. andDennett M.R. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32: 1239-1252.Google Scholar
  26. Hall R.O. andMeyer J.L. 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995-2012.Google Scholar
  27. Hedin L.O. 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94-105.Google Scholar
  28. Hendricks S.P. 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J.N. Am. Benthol. Soc. 12: 70-78.Google Scholar
  29. Holm S. 1979. A simple sequential rejective multiple test procedure. Scan. J. Stat. 6: 65-70.Google Scholar
  30. Huettel M.,Ziebis W. andForster S. 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnol. Oceanogr. 41: 309-322.Google Scholar
  31. Itzhaki R.F. andGill D.M. 1964. A micro-biuret method for estimating proteins. Analytical Biochem. 9: 401-410.Google Scholar
  32. Kemp P.F. 1990. The fate of benthic bacterial production. Rev. Aquat. Sci. 2: 109-124.Google Scholar
  33. Kirchman D.L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Kemp P.F.,Sherr B.F. andSherr E.B. (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, 509-512.Google Scholar
  34. Lee S. andFuhrmann J.A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298-1303.Google Scholar
  35. Lemke M.J.,Wickstrom C.E. andLeff L.G. 1997. A preliminary study on the distribution of viruses and bacteria in lotic habitats. Arch. Hydrobiol. 141: 67-74.Google Scholar
  36. Lock M.A. 1993. Attached microbial communities in rivers. In: Ford T.E. (ed.), Aquatic Microbiology: An Ecological Approach. Blackwell, Cambridge, Massachusetts, USA, 113-138.Google Scholar
  37. Loferer-Kröbacher M.,Klima J. andPsenner R. 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. Environ. Microbiol. 64: 688-694.Google Scholar
  38. Lowry O.H.,Rosebrough N.J.,Farr A.L. andRandall R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.Google Scholar
  39. Maranger R. andBird D.F. 1996. High concentrations of viruses in the sediments of Lac Gilbert. Québec. Microb. Ecol. 31: 141-151.Google Scholar
  40. Mayer L.M. andRice D.L. 1992. Early diagenesis of protein: a seasonal study. Limnol. Oceanogr. 37: 280-295.Google Scholar
  41. Mayer L.M.,Schick L.L. andSetchell F.W. 1986. Measurement of protein in nearshore marine sediments. Mar. Ecol. Prog. Ser. 30: 159-165.Google Scholar
  42. Melillo J.M.,Naiman R.J.,Aber J.D. andLinkins A.E. 1984. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull. Mar. Sci. 35: 341-356.Google Scholar
  43. Meyer J.L. 1994. The microbial loop in flowing waters. Microb. Ecol. 28: 195-199.Google Scholar
  44. Naegeli M.W. andUehlinger U. 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. J. North Am. Benthol. Soc. 16: 794-804.Google Scholar
  45. Norland S.,Heldal M. andTumyr O. 1987. On the relation between dry matter and volume of bacteria. Microb. Ecol. 13: 95-101.Google Scholar
  46. Peres-Neto P.R. 1999. How many statistical tests are too many? The problem of conducting multiple ecological inferences revisited. Mar. Ecol. Prog. Ser. 176: 303-306.Google Scholar
  47. Pirie N.W. 1955. Proteins. In: Paech K. andTracey V. (eds), Modern Methods of Plant Analysis. Springer Verlag, Berlin, 314-367.Google Scholar
  48. Porter K.G. andFeig Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.Google Scholar
  49. Proft G. 1998. Carbon turnover by respiration in the River Ilm (Thuringia, Germany). Acta hydrochim. hydrobiol. 26: 355-361.Google Scholar
  50. Psenner R. 1990. From image analysis to chemical analysis of bacteria: a long term study? Limnol. Oceanogr. 35: 234-237.Google Scholar
  51. Pusch M. 1996. The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323: 107-118.Google Scholar
  52. Pusch M.,Fiebig D.,Brettar I.,Eisenmann H.,Ellis B.K.,Kaplan L.A. et al. 1998. The role of microorganisms in the ecological connectivity of running waters. Freshwat. Biol. 40: 453-495.Google Scholar
  53. Pusch M. andSchwoerbel J. 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol 130: 35-52.Google Scholar
  54. Rausch T. 1981. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparisons of methods for extracting protein. Hydrobiologia 78: 237-251.Google Scholar
  55. Sander B.C. andKalff J. 1993. Factors controlling bacterial production in marine and freshwater sediments. Microb. Ecol. 26: 79-99.Google Scholar
  56. Schallenberg M. andKalff J. 1993. The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology 74: 919-934.Google Scholar
  57. Schwoerbel J. 1994a. Trophische Interaktionen in Fließgewässern (trophic interactions in running waters). Limnologica 24: 185-194.Google Scholar
  58. Schwoerbel J. 1994b. Methoden der Hydrobiologie, Sü_was-serbiologie. G. Fischer Verlag, Stuttgart, Germany.Google Scholar
  59. Simon M.,Alldredge A.L. andAzam F. 1990. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser. 65: 205-211.Google Scholar
  60. Simon M. andAzam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213.Google Scholar
  61. Sinsabaugh R.L. 1997. Large-scale trends for stream benthic respiration. J. North Am. Benthol. Soc. 16: 3-161.Google Scholar
  62. Sinsabaugh R.L. andFindlay S. 1995. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb. Ecol. 30: 127-141.Google Scholar
  63. Sinsabaugh R.L.,Golladay S.W. andLinkins A.E. 1991. Comparison of epilithic and epixylic biofilm development in a boreal river. Freshwat. Biol. 25: 179-187.Google Scholar
  64. Sobczak W.V.,Hedin L.O. andKlug M.J. 1998. Relationships between bacterial productivity and organic carbon at a soil-stream interface. Hydrobiologia 386: 45-53.Google Scholar
  65. Sutherland R.A. 1998. Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389: 153-167.Google Scholar
  66. Tezuka Y. 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microb. Ecol. 19: 227-238.Google Scholar
  67. Theil-Nielsen J. andSøndergaard M. 1998. Bacterial carbon biomass calculated from biovolumes. Arch. Hydrobiol. 141: 195-207.Google Scholar
  68. Thibodeaux L.J. andBoyle J.D. 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341-343.Google Scholar
  69. Vetter Y.A.,Deming J.W.,Jumars P.A. andKrieger-Brockett B.B. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36: 75-92.Google Scholar
  70. Volk C.J.,Volk C.B. andKaplan L.A. 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol. Oceanogr. 42: 39-44.Google Scholar
  71. Wanner S.C. andPusch M. 2001. Analysis of particulate organic matter retention by benthic structural elements in a lowland river (River Spree, Germany). Arch. Hydrobiol. 151: 475-492.Google Scholar
  72. Webster J.R. andMeyer J.L. 1997. Organic matter budgets for streams: a synthesis. J. North Am. Benthol. Soc. 16: 3-161.Google Scholar
  73. Weinbauer M.G. andHöfle M.G. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol. 64: 431-438.Google Scholar
  74. Wetzel R.G. 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 191-198.Google Scholar
  75. Wingender J.,Neu T.R. andFlemming H.-C. 1999. What are bacterial extracellular polymeric substances? In: Wingender J.,Neu T.R. andFlemming H.-C. (eds), Microbial Extracellular Polymeric Substances: Characterization, Structure, and Function. Springer Verlag, Berlin, 1-19.Google Scholar
  76. Wommack K.E. andColwell R.R. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Molec. Biol. Rev. 64: 69-114.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Helmut Fischer
    • 1
  • Susanne C. Wanner
    • 1
  • Martin Pusch
    • 1
  1. 1.Department Limnology of Lowland Rivers and Shallow LakesInstitute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations