Advertisement

Biogeochemistry

, Volume 61, Issue 3, pp 229–245 | Cite as

Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA

  • James W. Fourqurean
  • Joseph C. Zieman
Article

Abstract

Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds.

Carbonate Nutrient limitation Seagrass Spatial pattern Stoichiometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abal E.G.,Loneragan N.,Bowen P.,Perry C.J.,Udy J.W. andDennison W.C. 1994. Physiological and morphological responses of the seagrass Zostera capricorni Ascher to light intensity. J. Exp. Mar. Biol. Ecol. 178: 113-129.Google Scholar
  2. Atkinson M.J. andSmith S.V. 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: pp568-574.Google Scholar
  3. Bosence D. dy1989. Surface sublittoral sediments of Florida Bay. Bull. Mar. Sci. 44: 434-453.Google Scholar
  4. Boyer J.N.,Fourqurean J.W. andJones R.D. 1997. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analyses: zones of similar influence. Estuaries 20: 743-758.Google Scholar
  5. Boyer J.N. andJones R.D. 2002. View from the bridge: external and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary. In: Porter J.W. andPorter K.G. (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An ecosystem sourcebook. CRC Press, Boca Raton, 609-628.Google Scholar
  6. Capone D.G.,Penhale P.A.,Oremland R.S. andTaylor B.F. 1979. Relationship between productivity and N2 (C2H2) fixation in a Thalassia testudinum community. Limnol. Oceanogr. 24: 117-125.Google Scholar
  7. Corbett D.R.,Kump L.,Dillon K.,Burnett W. andChanton J. 2000. Fate of wastewater-borne nutrients under low discharge conditions in the subsurface of the Florida Keys, USA. Mar. Chem. 69: 99-115.Google Scholar
  8. de Kanel J. andMorse J.W. 1978. The chemistry of orthophosphate uptake from seawater onto calcite and aragonite. Geochim. Cosmochim. Acta 42: 1335-1340.Google Scholar
  9. Dillon K.S.,Corbett D.R.,Chanton J.P.,Burnett W.C. andFurbish D.J. 1999. The use of sulfur hexafluoride (SF6) as a tracer of septic tank effluent in the Florida Keys. J. Hydrol. 220: 129-140.Google Scholar
  10. Duarte C.M. 1990. Seagrass nutrient content. Mar. Ecol. Prog. Ser. 67: 201-207.Google Scholar
  11. Duarte C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87-112.Google Scholar
  12. Enos P. andPerkins R.D. 1977. Quaternary Sedimentation in South Florida. Vol. 147. The Geological Society of America Inc, Boulder.Google Scholar
  13. Erftemeijer P.L.A. 1994. Differences in nutrient concentrations and resources between seagarass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia. Bull. Mar. Sci. 54: 403-419.Google Scholar
  14. Erftemeijer P.L.A. and Middelburg J.J. 1993. Sediment-nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environments in South Sulawesi (Indonesia). Mar. Ecol. Prog. Ser. 102: 187-198.Google Scholar
  15. Fourqurean J.W.,Durako M.J.,Hall M.O. andHefty L.N. 2002. Seagrass distribution in south Florida: a multi-agency coordinated monitoring program. In: Porter J.W. andPorter K.G. (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An ecosystem source book. CRC Press, Boca Raton, 497-522.Google Scholar
  16. Fourqurean J.W.,Jones R.D. andZieman J.C. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuarine Coastal Shelf Sci. 36: 295-314.Google Scholar
  17. Fourqurean J.W.,Moore T.O.,Fry B. andHollibaugh J.T. 1997. Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Mar. Ecol. Prog. Ser. 157: 147-157.Google Scholar
  18. Fourqurean J.W.,Powell G.V.N.,Kenworthy W.J. andZieman J.C. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72: 349-358.Google Scholar
  19. Fourqurean J.W. andRobblee M.B. 1999. Florida Bay: a history of recent ecological changes. Estuaries 22: 345-357.Google Scholar
  20. Fourqurean J.W.,Willsie A.W.,Rose C.D. andRutten L.M. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar. Biol. 138: 341-354.Google Scholar
  21. Fourqurean J.W.,Zieman J.C. andPowell G.V.N. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol. Oceanogr. 37: 162-171.Google Scholar
  22. Frankovich T.A. andFourqurean J.W. 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar. Ecol. Prog. Ser. 159: 37-50.Google Scholar
  23. Gallegos M.E.,Merino M.,Marbà N. andDuarte C.M. 1993. Biomass and dynamics of Thalassia testudinum in the Mexican Caribbean: elucidating rhizome growth. Mar. Ecol. Prog. Ser. 95: pp185-192.Google Scholar
  24. Ginsburg R.N. andShinn E.A. 1964. Distribution of the reef-building community in Florida and the Bahamas. Am. Assoc. Petroleum Geologists Bull 48: 527.Google Scholar
  25. Grice A.M.,Loneragan N.R. andDennison W.C. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. J. Exp. Mar. Biol. Ecol. 195: 91-110.Google Scholar
  26. Howarth R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Syst. 19: 89-110.Google Scholar
  27. Hudson J.H.,Shinn E.A.,Halley R.B. andLidz B. 1976. Sclerochronology: a tool for interpreting past environments. Geology 4: 361-364.Google Scholar
  28. Jensen H.S.,McGlathery K.J.,Marino R. andHowarth R.W. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnol. Oceanogr. 43: 799-810.Google Scholar
  29. Ku T.C.W.,Walter L.M.,Coleman M.L.,Blake R.E. andMartini A.M. 1999. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida platform, USA. Geochim. Cosmochim. Acta 63: 2529-2546.Google Scholar
  30. Lapointe B.E. 1987. Phosphorus-and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Mar. Biol. 93: 561-568.Google Scholar
  31. Lapointe B.E. andMatzie W.R. 1996. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19: 422-435.Google Scholar
  32. Lapointe B.E.,O'Connell J.D. andGarrett G.S. 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochem. 10: 289-307.Google Scholar
  33. Leichter J.J.,Wing S.R.,Miller S.L. andDenny M.W. 1996. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41: 1490-1501.Google Scholar
  34. Lidz B.H. andHallock P. 2000. Sedimentary petrology of a declining reef ecosystem, Florida Reef Tract, USA. J. Coast. Res. 16: 675-697.Google Scholar
  35. Marszalek D.S.,Babashoff G.,Noel M.R. andWorley D.R. 1977. Reef distribution in south Florida. In: Third International Coral Reef Symposium. Rosensteil School of Marine and Atmospheric Sciences. University of Miami, Miami, FL, USA, 223-229.Google Scholar
  36. Patriquin D.G. 1972. The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Mar. Biol. 15: 35-46.Google Scholar
  37. Paul J.H.,Rose J.B.,Jiang S.C.,Zhou X.T.,Cochran P.,Kellog C. et al. 1997. Evidence of groundwater and surface marine water contamination by waste disposal wells in the Florida Keys. Water Res. 31: 1448-1454.Google Scholar
  38. Pedersen M.F. andBorum J. 1992. Nitrogen dynamics of eelgrass Zostera marina during a late summer period of high growth and low nutrient availability. Mar. Ecol. Prog. Ser. 80: 65-73.Google Scholar
  39. Powell G.V.N.,Fourqurean J.W.,Kenworthy W.J. andZieman J.C. 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuarine Coastal Shelf Sci. 32: 567-579.Google Scholar
  40. Powell G.V.N.,Kenworthy W.J. andFourqurean J.W. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bull. Mar. Sci. 44: 324-340.Google Scholar
  41. Redfield A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-221.Google Scholar
  42. Rudnick D.T.,Chen Z.,Childers D.L.,Boyer J.N. andFontaine T.D.I. 1999. Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 22: 398-416.Google Scholar
  43. Schomer N.S. andDrew R.D. 1982. An ecological characterization of the lower Everglades, Florida Bay and the Florida Keys. U.S. Fish and Wildlife Service. Office of Biological Services, Washington, DC, USA, 246.Google Scholar
  44. Short F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot. 27: 41-57.Google Scholar
  45. Smith N.P. 1994. Long-term Gulf-to-Atlantic transport through tidal channels in the Florida Keys. Bull. Mar. Sci. 54: 602-609.Google Scholar
  46. Szmant A.M. andForrester A. 1996. Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys, USA. Coral Reefs 15: 21-41.Google Scholar
  47. Thom R.M. andAlbright R.G. 1990. Dynamics of benthic vegetation standing-stock, irradiance, and water properties in central Puget Sound. Mar. Biol. 104: 129-141.Google Scholar
  48. Tomas C.R.,Bendis B. andJohns K. 1999. Role of nutrients in regulating plankton blooms in Florida Bay. In: Kumpf H.,Steidinger K. andSherman K. (eds), The Gulf of Mexico Large Marine Ecosystem. Blackwell Science, Malden, Massachussetts, USA, 323-337.Google Scholar
  49. Tomasko D.A. andLapointe B.E. 1991. Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: field observations and experimental studies. Mar. Ecol. Prog. Ser. 75: 9-17.Google Scholar
  50. Zieman J.C.,Fourqurean J.W. andIverson R.L. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bull. Mar. Sci. 44: 292-311.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • James W. Fourqurean
    • 1
  • Joseph C. Zieman
    • 2
  1. 1.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations