Advertisement

Photosynthetica

, Volume 39, Issue 3, pp 339–352 | Cite as

Crassulacean Acid Metabolism 1975–2000, a Check List

  • O.H. Sayed
Article

Abstract

A list of plant species documented over the past 25 years to exhibit Crassulacean Acid Metabolism (CAM) is presented. The list compiles all available information on these species including their growth habits, succulent parts, carbon isotope discrimination values, CAM types, CAM inducers, and CAM modifications.

angiosperms CAM inducers CAM modifications CAM types carbon discrimination ferns gymnospersm habitat phosphoenolpyruvate carboxylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, E., Badilla, I., Nobel, P.S.: Water relations, diurnal activity changes and productivity of a cultivated cactus, Opuntia ficus-indica.-Plant Physiol. 72: 775-780, 1983.Google Scholar
  2. Adams, W.W., III: Photosynthetic acclimation and photoinhibition of terrestrial and epiphytic CAM tissues growing in full sunlight and deep shade.-Aust. J. Plant Physiol. 15: 123-134, 1988.Google Scholar
  3. Balsamo, R.A., Uribe, E.G.: Leaf anatomy and ultrastructure of the crassulacean acid metabolism plant Kalanchoë daigremontiana.-Planta 173: 123-189, 1975.Google Scholar
  4. Barcikowski, W., Nobel, P.S.: Water relations of cacti during desiccation: Distribution of water in tissues.-Bot. Gaz. 145: 110-115, 1986.Google Scholar
  5. Barkla, B.J., Pantoja, O.: Physiology of ion transport across the tonoplast of higher plants.-Annu. Rev. Plant Physiol. 47: 159-184, 1996.Google Scholar
  6. Bartholomew, B.: Drought response in gas exchange of Dudleya farinosa (Crassulaceae) grown under natural conditions.-Photosynthetica 7: 114-120, 1973.Google Scholar
  7. Bender, M.M., Rouhani, I., Vines, H.M., Black, C.C., Jr.: 13C/12C ratio changes in crassulacean acid metabolism plants.-Plant Physiol. 52: 427-430, 1973.Google Scholar
  8. Black, C.C., Chen, J.Q., Doong, R.L., Angelov, M.N., Sung, S.J.S.: Alternative carbohydrate reserves in the daily cycle of crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 31-45. Springer-Verlag, Berlin 1996.Google Scholar
  9. Bonner, W., Bonner, J.: The role of carbon dioxide in acid formation by succulent plants.-Amer. J. Bot. 35: 113-136, 1948.Google Scholar
  10. Borland, A.M., Griffiths, H.: The regulation of citric acid and carbon recycling during CAM in Ananas comosus.-J. exp. Bot. 43: 53-60, 1989.Google Scholar
  11. Bruinsma, J.: Studies on the crassulacean acid metabolism.-Acta bot. neerl. 7: 531-588, 1958.Google Scholar
  12. Brulfert, J., Güclü, S., Kluge, M.: Effects of abrupt or progressive drought on the photosynthetic mode of Crassula sieberiana cultivated under different day lengths.-J. Plant Physiol. 138: 685-690, 1991.Google Scholar
  13. Brulfert, J., Kluge, M., Güçlü, S., Queiroz, O.: Combined effects of drought, daylength, and photoperiod on rapid shifts in the photosynthetic pathway of Sedum spectabile, a CAM species.-Plant Physiol. Biochem. 26: 7-16, 1988.Google Scholar
  14. Carter, P.J., Fewson, C.A., Nimmo, G.A., Wilkins, M.B.: Roles of circadian rhythms, light and temperature in the regulation of phosphoenolpyruvate carboxylase in crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 46-52. Springer, Berlin 1996.Google Scholar
  15. Chellappan, K.P., Seeni, S., Gnanam, A.: Photosynthetic studies with mesophyll protoplasts from Notonia grandiflora, a crassulacean acid metabolism plant.-Physiol. Plant. 48: 403-410, 1980.Google Scholar
  16. Cockburn, W.: Crassulacean acid metabolism in Lithops insularis, a non-halophytic member of Mesembryanthemaceae.-Planta 118: 89-90, 1974.Google Scholar
  17. Cushman, J.C., Bohnert, H.J.: Transpirational activation of CAM genes during development and environmental stress.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 135-158. Springer-Verlag, Berlin 1996.Google Scholar
  18. Daniel, P.P., Bryant, J.A., Woodward, F.I.: PEPc from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress.-Biochem. J. 218: 387-393, 1984.Google Scholar
  19. De Luca, P., Alfani, A., De Santo, V.A.: CAM, transpiration, and adaptive mechanisms to xeric environments in the succulent Cucurbitaceae.-Bot. Gaz. 138: 474-478, 1977.Google Scholar
  20. Denius, H.R., Jr., Homann, P.H.: The relationship between photosynthesis, respiration, and crassulacean acid metabolism in leaf slices of Aloe arborescens Mill.-Plant Physiol. 49: 873-880, 1972.Google Scholar
  21. De Santo, A.V., Bartoli, G.: Crassulacean acid metabolism in leaves and stems of Cissus quadrangularis.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 216-229. Springer, Berlin 1996.Google Scholar
  22. Didden-Zopfy, B., Nobel, P.S.: Heat tolerance and heat acclimation of Opuntia bigelovii.-Oecologia 52: 176-180, 1982.Google Scholar
  23. Dietz, K.J., Arbinger, B.: cDNA sequence and expression of subunit E of the vacuolar H+-ATPase in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum.-Biomembranes 1281: 134-138, 1996.Google Scholar
  24. Dinger, B.E., Patten, D.T.: Carbon dioxide exchange and transpiration in species of Echinocereus (Cactaceae), as related to their distribution within the Pinaleno Mountains, Arizona.-Oecologia 14: 389-411, 1974.Google Scholar
  25. Earnshaw, M.J., Carver, K.A., Charlton, W.A.: Leaf anatomy, water relations, and crassulacean acid metabolism in the chlorenchyma and colourless internal water storing tissues of Carpobrotus edulis and Senecio mandraliscae.-Planta 170: 421-432, 1987a.Google Scholar
  26. Earnshaw, M.J., Carver, K.A., Lee, J.A.: Changes in leaf water potential and CAM in Sempervivum montanum and Sedum album in response to water availability in the field.-Oecologia 67: 486-492, 1985.Google Scholar
  27. Earnshaw, M.J., Winter, K., Ziegler, H., Stichler, W., Crutwell, N.E.G., Kerenga, K., Gribb, P.J., Croft, J.R., Carver, K.A., Gunn, T.C.: Altitudinal changes in the incidence of crassulacean acid metabolism.-Oecologia 73: 566-572, 1987b.Google Scholar
  28. Eastmond, P.J., Ross, J.D.: Evidence that the induction of crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signaling.-Plant Cell Environ. 20: 1559-1565, 1999.Google Scholar
  29. Edwards, G., Walker, D.A.: C3, C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis.-Blackwell Scientific Publishers, Oxford 1983.Google Scholar
  30. Edwards, G.E., Dai, Z., Cheng, S.H., Ku, M.S.B.: Factors affecting the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 119-134. Springer-Verlag, Berlin 1996.Google Scholar
  31. Ehleringer, J.R., Osmond, C.B.: Stable isotopes.-In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Pp. 281-300. Chapman & Hall, London 1994.Google Scholar
  32. Fernández, M.D., Pieters, A., Azkue, M., Rengifo, E., Tezara, W., Woodward, F.I., Herrera, A.: Photosynthesis in plants of four tropical species growing under elevated CO2.-Photosynthetica 37: 587-599, 1999.Google Scholar
  33. Fetene, M., Lee, H.S., Jr., Lüttge, U.: Photosynthetic acclimation in a terrestrial CAM bromeliad, Bromelia humilis Jacq.-New Phytol. 114: 399-406, 1990.Google Scholar
  34. Fu, C.F., Hew, C.S.: Crassulacean acid metabolism in orchids under water stress.-Bot. Gaz. 143: 294-297, 1982.Google Scholar
  35. Gaur, Y.D.: Preliminary studies on titratable acidity in xerophytic plants.-Experientia 24: 239-240, 1968.Google Scholar
  36. Gerwick, B.C., Williams, G.J., III: Temperature and water relations of gas exchange of Opuntia polycantha.-Oecologia 35: 149-159, 1978.Google Scholar
  37. Griffiths, H.: Crassulacean acid metabolism: re-appraisal of physiological plasticity in form and function.-Adv. bot. Res. 15: 43-92, 1988.Google Scholar
  38. Griffiths, H.: Carbon isotope discrimination.-In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 181-192. Chapman & Hall, London-Glasgow-New York-Tokyo-Melbourne 1993.Google Scholar
  39. Griffiths, H., Lüttge, U., Stimmel, K.-H., Crook, C.E., Griffiths, N.M., Smith, J.A.C.: Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration.-Plant Cell Environ. 9: 385-393, 1986.Google Scholar
  40. Griffiths, H., Ong, B.L., Avadhani, P.N., Goh, C.J.: Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibtion in Pyrrosia piloselloides.-Planta 179: 115-122, 1989.Google Scholar
  41. Griffiths, H., Smith, J.A.C.: Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat performance and the occurrence of CAM.-Oecologia 60: 176-184, 1983.Google Scholar
  42. Guralnick, L.J., Strand, D.: Induction of crassulacean acid metabolism with gibberellic acid in Mesembryanthemum crystallinum.-Plant Physiol. Suppl. S 111: 368-368, 1996.Google Scholar
  43. Guralnick, L.J., Ting, I.P.: Physiological changes in Portulacaria afra (L.) Jacq. during a summer drought and rewatering.-Plant Physiol. 85: 481-486, 1987.Google Scholar
  44. Gurevitch, J., Teeri, J.A., Wood, A.M.: Differentiation among populations in Sedum wrightii (Crassulaceae) in response to limited water availability: water relations, CO2 assimilation, growth and survivorship.-Oecologia 70: 198-204, 1986.Google Scholar
  45. Haag-Kerver, A., Franco, A.C., Lüttge, U.: The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L.-J. exp. Bot. 43: 345-352, 1992.Google Scholar
  46. Herppich, W.B., Herppich, M., Willert, D.J. von: Ecophysiological investigations on plants of the genus Plectranthus (Lamiaceae). Influence of environment and leaf age on CAM, gas exchange and leaf water relations in Plectranthus marrubioides Benth.-Flora 193: 99-109, 1998.Google Scholar
  47. Herppich, W.B., Peckmann, K.: Influence of mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CAM plants Prenia sladeniana (ME-type) and Crassula lycopoidoides (PEPCK-type).-Ann. Bot. 86: 611-620, 2000.Google Scholar
  48. Holtum, J.A.M., Winter, K.: Degrees of crassulacean acid metabolism in tropical epiphytes and lithophytic ferns.-Aust. J. Plant Physiol. 26: 749-757, 1999.Google Scholar
  49. Jones, M.R.: The effect of leaf age on leaf respiration and CO2 exchange of the CAM plant Kalanchoë fedtschenkoi.-Planta 123: 91-96, 1975.Google Scholar
  50. Kausch, W.: Beziehungen zwischen Wurzelwachstum, Transpiration und CO2-Gaswechsel bei einigen Kakteen.-Planta 66: 229-238, 1965.Google Scholar
  51. Keeley, J.E.: Crassulacean acid metabolism in submerged aquatic plants.-In: Ting, I.P., Gibbs, M. (ed.): Crassulacean Acid Metabolism. Pp. 303-304. American Society of Plant Physiologists, Rockville 1982.Google Scholar
  52. Keeley, J.E.: Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii.-Oecologia 58: 57-62, 1983.Google Scholar
  53. Keeley, J.E.: Aquatic CAM photosynthesis.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 281-295. Springer, Berlin-Heidelberg 1996.Google Scholar
  54. Keeley, J.E., Morton, B., Babcock, B., Castillo, P., Fish, B., Jerauld, E., Johnson, B., Landre, L., Lum, H., Miller, C., Parker, A., van Steenwyk, G.: Dark CO2 fixation and diurnal malic acid fluctuations in the submerged aquatic Isoetes storkii.-Oecologia 48: 332-333, 1981.Google Scholar
  55. Keeley, J.E., Walker, C.M., Mathews, R.P.: Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes.-Oecologia 58: 63-69, 1983.Google Scholar
  56. Kluge, M.: Is Sedum acre L. a CAM plant?-Oecologia 29: 77-83, 1977.Google Scholar
  57. Kluge, M.: Crassulacean Acid Metabolism: recent biochemical, physiological and ecological aspects.-G. bot. ital. 121: 179-190, 1987.Google Scholar
  58. Kluge, M., Brulfert, J.: Crassulacean acid metabolism in the genus Kalanchoë: Evolution, physiological and biochemical aspects.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 324-335. Springer-Verlag, Berlin 1996.Google Scholar
  59. Kluge, M., Osmond, C.B.: Studies on phosphoenolpyruvate carboxylase and other enzymes of Crassulacean acid metabolism of Bryophyllum tubiflorum and Sedum praeltum.-Z. Pflanzenphysiol. 66: 97-105, 1972.Google Scholar
  60. Kluge, M., Schomburg, M.: The tonoplast as a target of temperature effects in crassulacean acid metabolism.-In: Winter. K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 72-77. Springer-Verlag, Berlin 1996.Google Scholar
  61. Kluge, M., Ting, I.P.: Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation.-Springer-Verlag, Berlin-Heidelberg-New York 1978.Google Scholar
  62. Knauff, R.L., Arditti, J.: Partial identification of dark 14CO2 products in Cattleya (Orchidaceae).-New Phytol. 68: 657-661, 1969.Google Scholar
  63. Koch, K.E., Kennedy, R.A.: Effect of seasonal changes in the mid-west on crassulacean acid metabolism (CAM) in Opuntia humifusa Raf.-Oecologia 45: 390-395, 1980.Google Scholar
  64. Koch, K.E., Kennedy, R.A.: Crassulacean acid metabolism in the succulent C4 dicot Portulaca oleraceae L. under natural environmental conditions.-Plant Physiol. 69: 757-761, 1982.Google Scholar
  65. Kockburn, W., Goh, C.J., Avadhani, P.N.: Photosynthetic carbon assimilation in a shootless orchid Chiloschista usneoides (Don) LDL.-Plant Physiol. 77: 83-86, 1985.Google Scholar
  66. Kowalczyk, S., Januszewska, B., Cymerska, E., Moslowski, P.: The occurrence of inorganic pyrophosphate, D-fructose-6-phosphate 1, phosphotransferase in higher plants. I. Initial characterization of partialy purified enzyme from Sansevieria trifasciata.-Physiol. Plant. 60: 31-37, 1984.Google Scholar
  67. Krisch, R., Rakowski, K., Ratajczak, R.: Processing of V-ATP-ase subunit B of Mesembryanthemum crystallinum L. in vitro by a protease and/or reactive oxygen species.-Biol. Chem. 381: 583-592, 2000.Google Scholar
  68. Lange, O.L., Schulze, E.-D., Kappen, L., Evenari, M., Buschbom, U.: CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev desert.-Photosynthetica 9: 318-326, 1975.Google Scholar
  69. Lange, O.L., Zuber, M.: Frerea indica, stem succulent CAM plant with deciduous C3 leaves.-Oecologia 31: 67-72, 1977.Google Scholar
  70. Lee, H.S.J., Griffiths, H.: Induction and repression of CAM in Sedum telephium L. in response to photoperiod and water stress.-J. exp. Bot. 38: 834-841, 1987.Google Scholar
  71. Leegood, R.C.: Carbon dioxide concentrating mechanisms.-In: Lea, P.J., Leegood, R.C. (ed.): Plant Biochemistry and Molecular Biology. Pp. 47-72. J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1993.Google Scholar
  72. Leegood, R.C., Osmond, C.B.: The flux of metabolites in C4 and CAM plants.-In: Dennis, D.J., Turpin, D.H. (ed.): Plant Physiology, Biochemistry and Molecular Biology. Pp. 274-298. Longman, Harlow 1990.Google Scholar
  73. Lerman, J.C.: How to interpret variations in the carbon isotope ratio of plants. Biological and environmental effects.-In: Marcelle, R. (ed.): Environmental and Biological Control of Photosynthesis. Pp. 323-335. Dr W. Junk Publ., The Hague 1975.Google Scholar
  74. Lüttge, U.: Clusia: Plasticity and diversity in a genus of C3/CAM intermediate tropical trees.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 296-311. Springer-Verlag, Berlin 1996.Google Scholar
  75. Lüttge, U.: The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism.-Planta 211: 761-769, 2000.Google Scholar
  76. Lüttge, U., Ball, E.: Water relation parameters of the CAM plant Kalanchoë daigremontiana in relation to diurnal malate oscillations.-Oecologia 31: 85-94, 1977.Google Scholar
  77. Lüttge, U., Ball, E.: Dark respiration of CAM plants.-Plant Physiol. Biochem. 25: 3-10, 1987.Google Scholar
  78. Lüttge, U., Ball, E., Fetene, M., Medina, E.: Flexibility of crassulacean acid metabolism in Kalanchoe pinnata (Lam.) Pers. I. Response to irradiance and supply of nitrogen and water.-J. Plant Physiol. 137: 259-267, 1991.Google Scholar
  79. Lüttge, U., Ball, E., Kluge, M., Ong, B.L.: Photosynthetic light requirements of various tropical vascular epiphytes.-Physiol. vég. 24: 315-331, 1986.Google Scholar
  80. Lyndon, R.A.: Nitrogen metabolism of detached Kalanchoë leaves in the dark in relation to acidification, deacidification and O2 uptake.-J. exp. Bot. 13: 20-35, 1962.Google Scholar
  81. Malda, G., Backhause, R.A., Martin, C.: Alteration in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus.-Plant Cell Tiss. Organ. 58: 1-9, 1999.Google Scholar
  82. Martin, C.E.: Putative causes and consequences of recycling CO2 via crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 192-203. Springer-Verlag, Berlin 1996.Google Scholar
  83. Martin, C.E., Higley, M., Wang, W.-Z.: Recycling of CO2 via Crassulacean acid metabolism in the rock outcrop succulent Sedum pulchellum Michx. (Crassulaceae).-Photosynth. Res. 18: 337-343, 1988.Google Scholar
  84. Martin, C.E., Zee, A.K.: C3 photosynthesis and Crassulacean acid metabolism in a Kansas rock outcrop succulent, Talinum calycinum Engelm. (Portulacaceae).-Plant Physiol. 73: 718-723, 1983.Google Scholar
  85. Mazen, A.M.A.: Changes in properties of phosphoenolpyruvate carboxylase with induction of Crassulacean Acid Metabolism (CAM) in the C4 plant Portulaca oleracea.-Photosynthetica 38: 385-391, 2000.Google Scholar
  86. McWilliams, E.L.: Comparative rates of dark CO2 uptake and acidification in Bromeliaceae, Orchidaceae and Euphorbiaceae.-Bot. Gaz. 131: 285-290, 1970.Google Scholar
  87. Medina, E., Delgado, M.: Photosynthesis and night CO2 fixation in Echeveria columbiana v. Poellnitz.-Photosynthetica 10: 155-163, 1976.Google Scholar
  88. Meinzer, F.C., Rundel, P.W.: Crassulacean acid metabolism and water use efficiency in Echeveria pumila.-Photosynthetica 7: 358-364, 1973.Google Scholar
  89. Milburn, T.R., Pearson, D.J., Ndegwe, N.: Crassulacean acid metabolism under natural conditions.-New Phytol. 67: 883-897, 1968.Google Scholar
  90. Mooney, H.A., Troughton, J.H., Berry, J.A.: Arid climates and photosynthetic systems.-Carnegie Inst. Washington Yearbook 73: 793-805, 1974.Google Scholar
  91. Mooney, H.A., Troughton, J.H., Berry, J.A.: Carbon isotope ratio measurements of succulent plants in southern Africa.-Oecologia 30: 295-304, 1977.Google Scholar
  92. Moster, R.W.P.: Organic acid and carbohydrate metabolism in Nopalea cochinelifera.-Experientia 15: 30-31, 1959.Google Scholar
  93. Mukerji, S.: Four-hourly variations in the activities of malate dehydrogenase (decarboxylation) and phosphopyruvate carboxylase in the cactus (Nopalea dejecta) plant.-Indian J. Biochem. 5: 62-64, 1968.Google Scholar
  94. Neales, T.F.: The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L.-Aust. J. biol. Sci. 26: 705-714, 1973.Google Scholar
  95. Neales, T.F., Patterson, A.A., Hartney, V.J.: Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes.-Nature 219: 469-472, 1968.Google Scholar
  96. Nimmo, H.G.: The regulation of phosphoenolpyruvate carboxylase in CAM plants.-Trends Plant Sci. 5: 75-80, 2000.Google Scholar
  97. Nishida, K.: Studies on stomatal movement of plants in relation to the acid assimilation.-Physiol. Plant. 16: 281-298, 1963.Google Scholar
  98. Nobel, P.S.: Water relations and photosynthesis of a desert CAM plant, Agave deserti.-Plant Physiol. 58: 576-582, 1976.Google Scholar
  99. Nobel, P.S.: Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert.-Oecologia 27: 117-133, 1977.Google Scholar
  100. Nobel, P.S.: Interception of photosynthetically active radiation by cacti of different morphology.-Oecologia 45: 160-165, 1980.Google Scholar
  101. Nobel, P.S.: Environmental Biology of Agaves and Cacti.-Cambridge University Press, Cambridge-New York-New Rochelle-Melbourne-Sydney 1988.Google Scholar
  102. Nobel, P.S.: High productivity of certain agronomic CAM species.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 225-265. Springer-Verlag, Berlin 1996.Google Scholar
  103. Nobel, P.S., Garcia-Moya, E., Quero, E.: High annual productivity of certain agaves and cacti under cultivation.-Plant Cell Environ. 15: 329-335, 1992.Google Scholar
  104. Nobel, P.S., Lüttge, U., Heuer, S., Ball, E.: Influence of applied NaCl on crassulacean acid metabolism and ionic levels in a cactus, Cereus validus.-Plant Physiol. 75: 799-803, 1994.Google Scholar
  105. Nobel, P.S., North, G.B.: Features of roots of CAM plants.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 226-279. Springer-Verlag, Berlin 1996.Google Scholar
  106. Nobel, P.S., Quero, E., Linares, H.: Root versus shoot biomass responses to water, nitrogen, and phosphorus application for Agave lechuguila.-Bot. Gaz. 150: 411-416, 1989.Google Scholar
  107. Nobel, P.S., Zaragoza, L.J., Smith, W.K.: Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel.-Plant Physiol. 55: 1067-1070, 1975.Google Scholar
  108. Nurenbergk, E.L.: Endogener Rhythmus und CO2 Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus.-Planta 56: 28-70, 1961.Google Scholar
  109. Olesen, T.D., Bailey, G.J.: Acclimation of pineapple to night length.-Aust. J. Plant Physiol. 22: 387-390, 1995.Google Scholar
  110. Osmond, C.B.: Crassulacean acid metabolism: A curiosity in context.-Annu. Rev. Plant Physiol. 29: 379-414, 1978.Google Scholar
  111. Osmond, C.B.: CAM: Regulated photosynthetic metabolism for all seasons.-In: Sybesma, C. (ed.): Advances in Photosynthesis Research. Vol. III. Pp. 557-564. Martinus-Nijhoff/Dr W. Junk Publishers, The Hague-Boston-Lancaster 1984.Google Scholar
  112. Osmond, C.B., Adams, W., Smith, S.D.: Crassulacean acid metabolism.-In: Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Pp. 255-280. Chapman and Hall, London 1994.Google Scholar
  113. Osmond, C.B., Allaway, W.G., Sutton, B.G., Troughton, J.H., Queiroz, O., Lüttge, U., Winter, K.: Carbon isotope discrimination in photosynthesis of CAM plants.-Nature 246: 41-42, 1973.Google Scholar
  114. Osmond, C.B., Holtum, J.A.M.: Crassulacean Acid Metabolism.-In: Hatch, M.D., Boardman, N.K. (ed.): The Biochemistry of Plants. Vol. 8. Pp. 283-328. Academic Press, New York-London-Toronto-Sydney-San Francisco 1981.Google Scholar
  115. Osmond, C.B., Nott, D.L., Firth, P.M.: Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia.-Oecologia 40: 331-350, 1979.Google Scholar
  116. Osmond, C.B., Popp, M., Robinson, S.A.: Stoichiometric nightmares: Studies of photosynthetic O2 and CO2 exchange in CAM plants.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 19-30. Springer, Berlin 1996.Google Scholar
  117. Osmond, C.B., Winter, K., Ziegler, H.: Functional significance of different pathways of CO2 fixation in photosynthesis.-In: Lange, D.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology II. Pp. 479-547. Springer-Verlag, Berlin-Heidelberg-New York 1982.Google Scholar
  118. Osmond, C.B., Ziegler, H., Stichler, W., Trimborn, P.: Carbon isotope discrimination in alpine succulent plants supposed to be capable of Crassulacean Acid Metabolism (CAM).-Oecologia 18: 209-217, 1975.Google Scholar
  119. Patten, D.T., Dinger, B.E.: Carbon dioxide exchange patterns in cacti from different environments.-Ecology 50: 686-688, 1969.Google Scholar
  120. Pilon-Smits, E.A.H., t'Hart, H., van Brederode, J.: Phosphoenolpyruvate carboxylase in Sedum rupestre (Crassulaceae): Drought-enhanced expression and purification.-J. Plant Physiol. 136: 155-160, 1990.Google Scholar
  121. Pilon-Smits, E.A.H., t'Hart, H., van Brederode, J.: Evolutionary aspects of crassulacean acid metabolism in the Crassulaceae.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 349-359. Springer-Verlag, Berlin 1996.Google Scholar
  122. Popp, M., Kramer, D., Lee, H., Diaz, M., Ziegler, H., Lüttge, U.: Crassulacean acid metabolism in tropical dicotyledonous trees of the genus Clusia.-Trees 1: 238-247, 1987.Google Scholar
  123. Ranson, S.L., Thomas, M.: Crassulacean acid metabolism.-Annu. Rev. Plant Physiol. 11: 81-110, 1960.Google Scholar
  124. Raven, J.A., Handley, L.L., MacFarlane, J.J., McInroy, S., McKenzie, L., Richards, J.H., Samuelsson, G.: The role of CO2 uptake by roots and CAM acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Eriocaulon decangulare.-New Phytol. 108: 125-148, 1988.Google Scholar
  125. Rayder, L., Ting, I.P.: Carbon metabolism in two species of Pereskia (Cactaceae).-Plant Physiol. 68: 139-142, 1981.Google Scholar
  126. Rayder, L., Ting, I.P.: CAM-idling in Hoya carnosa (Asclepiadaceae).-Photosynth. Res. 4: 203-211, 1983a.Google Scholar
  127. Rayder, L., Ting, I.P.: Shifts in the carbon metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) brought about by water stress. II. Enzymology.-Plant Physiol. 72: 601-615, 1983b.Google Scholar
  128. Ritz, D., Kluge, M.: Circadian rhythmicity of CAM in continuous light: Coincidence between gas exchange parameters, 14CO2 fixation pattern and PEP-carboxylase properties.-J. Plant Physiol. 131: 285-296, 1987.Google Scholar
  129. Robe, W.E., Griffiths, H.: Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments.-Plant Cell Environ. 23: 1041-1054, 2000.Google Scholar
  130. Rustin, P., Meyer, C.R., Wedding, R.T.: Identification of substrate and effector on binding sites for phosphoenolpyruvate carboxylase from Crassula argentea. A possible role of phosphoenolpyruvate as substrate and activator.-J. biol. Chem. 263: 17611-17614, 1988.Google Scholar
  131. Sayed, O.H., Earnshaw, M.J., Cooper, M.: Growth, water relations, and CAM induction in Sedum album in response to water stress.-Biol. Plant. 36: 383-388, 1994.Google Scholar
  132. Sayed, O.H., Hegazy, A.K.: Life table analysis and ecophysiology of Mesembryanthemum nodiflorum in its natural environment.-Acta oecol. 12: 753-760, 1991.Google Scholar
  133. Schäfer, C., Lüttge, U.: Effects of high irradiances on photosynthesis, growth and crassulacean acid metabolism in the epiphyte Kalanchoë uniflora.-Oecologia 75: 567-574, 1988.Google Scholar
  134. Schmidt, J.E., Kaiser, W.M.: Response of the succulent leaves of Peperomia magnoliaefolia to dehydration. Water relations and solute movement in chlorenchyma and hydrenchyma.-Plant Physiol. 83: 190-194, 1987.Google Scholar
  135. Schmitt, A.K., Lee, H.S.J., Lüttge, U.: The response of the C3-CAM tree, Clusia rosea, to light and water stress. I. Gas exchange characteristics.-J. exp. Bot. 39: 1581-1590, 1988.Google Scholar
  136. Schuber, M., Kluge, M.: In situ studies on crassulacean acid metabolism in Sedum acre L. and Sedum mite Gil.-Oecologia 50: 82-87, 1981.Google Scholar
  137. Schütte, K., Steyn, R., Westhuizen, M.: Crassulacean acid metabolism in South African succulents: a preliminary investigation into occurrence in various families.-J. South African Bot. 33: 107-110, 1967.Google Scholar
  138. Sen, D.N.: A report on crassulacean acid metabolism in Euphorbia caudicifolia and its diversity.-Curr. Sci. 39: 116-117, 1970.Google Scholar
  139. Sinclair, R.: Water relations of tropical epiphytes. III. Evidence for crassulacean acid metabolism.-J. exp. Bot. 35: 1-17, 1984.Google Scholar
  140. Sipes, D.L., Ting, I.P.: Crassulacean acid metabolism and Crassulacean acid metabolism modifications in Peperomia camptotricha.-Plant Physiol. 77: 59-63, 1985.Google Scholar
  141. Smirnoff, N: Regulation of crassulacean acid metabolism by water stress in the C3 /CAM intermediate Sedum telephium.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 176-191. Springer-Verlag, Berlin 1996.Google Scholar
  142. Smith, J.A.: Vacuolar accumulation of organic acids and other anions in CAM plants.-In: Marin, B. (ed.): Plant Vacuoles. Pp. 79-87. Plenum Publ. Corporation, New York 1987.Google Scholar
  143. Smith, J.A.C., Bryce, J.H.: Metabolite compartmentation and transport in CAM plants.-In: Tobin, A.K. (ed.): Plant Organelles. Compartmentation of Metabolism in Photosynthetic Cells. Pp. 141-167. Cambridge University Press, Cambridge-New York-Oakleigh 1992.Google Scholar
  144. Smith, J.A.C., Ingram, J., Tsiantis, M.S., Barkla, B.J., Bartholomew, D.M., Bettey, M., Pantoja, O., Pennington, A.J.: Transport across vacuolar membrane in CAM plants.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 53-71. Springer-Verlag, Berlin 1996.Google Scholar
  145. Smith, J.A.C., Winter, K.: Taxonomic distribution of crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 427-436. Springer-Verlag, Berlin 1996.Google Scholar
  146. Szarek, S.R., Holthe, P.A., Ting, I.P.: Minor physiological response to elevated CO2 by the CAM plant Agave vilmoriniana.-Plant Physiol. 83: 938-940, 1987.Google Scholar
  147. Szarek, S.R., Ting, I.P.: Physiological responses to rainfall in Opuntia basilaris (Cactaceae).-Amer. J. Bot. 62: 602-609, 1979.Google Scholar
  148. Teeri, J.A.: Photosynthetic variation in the Crassulaceae.-In: Ting, I.P., Gibbs, M. (ed.): Crassulacean Acid Metabolism. Pp. 244-259. American Society of Plant Physiologists, Rockville 1982a.Google Scholar
  149. Teeri, J.A.: Seasonal variations in crassulacean acid metabolism in Dudleya blochmanae (Crassulaceae).-Oecologia 64: 68-73, 1982b.Google Scholar
  150. Teeri, J.A., Turner, M., Gurevitch, J.: The response of leaf water potential and crassulacean acid metabolism to prolonged drought in Sedum rubrotinctum.-Plant Physiol. 81: 678-680, 1986.Google Scholar
  151. Ting, I.P.: Crassulacean acid metabolism.-Annu. Rev. Plant Physiol. 36: 595-622, 1985.Google Scholar
  152. Ting, I.P., Bates, L., Sternberg, L.O., Deniro, M.J.: Physiological and isotopic aspects of photosynthesis in Peperomia.-Plant Physiol. 78: 246-249, 1985.Google Scholar
  153. Ting, I.P., Burk, J.H.: Aspects of carbon metabolism in Welwitschia.-Plant Sci. Lett. 32: 279-285, 1983.Google Scholar
  154. Ting, I.P., Dugger, W.M.: Non-autotrophic carbon dioxide metabolism in cacti.-Bot. Gaz. 129: 9-15, 1968.Google Scholar
  155. Ting, I.P., Gibbs, M.: Crassulacean Acid Metabolism.-American Society of Plant Physiologists, Rockville 1982.Google Scholar
  156. Ting, I.P., Patel, A., Kaur, S., Hann, J., Walling, L.: Ontogenic development of crassulacean acid metabolism as modified by water stress in Peperomia.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 204-215. Springer-Verlag, Berlin 1996.Google Scholar
  157. Ting, I.P., Sipes, D.: Metabolic modifications of crassulacean acid metabolism in CAM-idling and CAM-cycling.-In: Luden, P.W., Burris, J.E. (ed.): Night Fixation and CO2 Metabolism. Pp. 371-378. Elsevier, Amsterdam 1985.Google Scholar
  158. Treichel, S.: Crassulacean Säurestoffwechel bei einem saltztoleranten Vertreter der Aizoaceae: Aptenia crodifolia.-Plant Sci. Lett. 4: 141-144, 1975.Google Scholar
  159. Troughton, J.H.: δ13C as an indicator of carboxylation reactions.-In: Gibbs, M., Latzko, E. (ed.): Photosynthesis II. Pp. 140-149. Springer-Verlag, Berlin-Heidelberg-New York 1979.Google Scholar
  160. Troughton, J.H., Mooney, H.A., Berry, J.A., Varity, D.: Variable carbon isotope ratios of Dudleya species growing in natural environments.-Oecologia 30: 307-311, 1977.Google Scholar
  161. Wang, N., Nobel, P.S.: Phloem transport of fractans in the crassulacean acid metabolism species Agave deserti.-Plant Physiol. 116: 709-714, 1998.Google Scholar
  162. Whiting, B.H., van der Venter, H.A., Small, S.E.C.: Crassulacean acid metabolism in jointed cactus (Opuntia aurantiaca Lindley).-Agroplantae 11: 41-43, 1979.Google Scholar
  163. Willert, D.J. von, Brinckmann, E., Scheitler, B., Eller, B.M.: Availability of water controls crassulacean acid metabolism in succulents of the Richterveld (Namib desert, South Africa).-Planta 164: 44-55, 1985.Google Scholar
  164. Willert, D.J. von, Brinckmann, E., Schulze, D.E.: Ecophysiological investigations of plants in coastal deserts of southern Africa. Ion control and CAM.-In: Jefferies, R.J., Davy, A.J. (ed.): Ecological Processes in Coastal Environments. Pp. 321-331. Blackwell Scientific Publishers, Oxford 1979.Google Scholar
  165. Willert, D.J. von, Eller, B.M., Werger, M.J.A., Brinkmann, E., Ihlenfeldt, H.: Life Strategies of Succulents in Deserts.-Cambridge University Press, Cambridge 1992.Google Scholar
  166. Winter, K.: δ13C values of some succulent plants from Madagascar.-Oecologia 40: 103-112, 1979.Google Scholar
  167. Winter, K.: Crassulacean acid metabolism.-In: Barber, J., Baker, N.R. (ed.): Photosynthetic Mechanisms and the Environment. Pp. 329-387. Elsevier Scientific Publishers, Amsterdam-New York-Oxford 1985.Google Scholar
  168. Winter, K., Lüttge, U., Winter, E.: Seasonal shifts from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural habitat.-Oecologia 34: 225-237, 1978.Google Scholar
  169. Winter, K., Medina, E., Mayoral, M.L., Muniz, L.: Crassulacean acid metabolism in roots of the leafless orchid, Campilocentrum tyridion.-J. Plant Physiol. 118: 73-78, 1986a.Google Scholar
  170. Winter, K., Osmond, C.B., Hubick, K.T.: Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia and other related rainforest species in Australia.-Oecologia 68: 224-230, 1986b.Google Scholar
  171. Winter, K., Smith, J.A.C.: An introduction to crassulacean acid metabolism. Principles and ecological diversity.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 1-16. Springer-Verlag, Berlin 1996a.Google Scholar
  172. Winter, K., Smith, J.A.C.: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution.-Springer-Verlag, Berlin 1996b.Google Scholar
  173. Winter, K., Smith, J.A.C.: Crassulacean acid metabolism. Current status and perspectives.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. Pp. 289-326. Springer-Verlag, Berlin 1996c.Google Scholar
  174. Winter, K., Troughton, J.H.: Photosynthetic pathways in plants of coastal and inland habitat in Israel and the Sinai.-Flora 167: 1-34, 1978.Google Scholar
  175. Winter, K., Wallace, B.J., Stocker, G.C., Rakasandic, Z.: Crassulacean acid metabolism in Australian varsular epiphytes and some related species.-Oecologia 56: 129-141, 1983.Google Scholar
  176. Woodward, F.I.: The climatic control of the altitudinal distribution of Sedum rosea L. and Sedum telephium L. I. Field observation.-New Phytol. 74: 323-324, 1975.Google Scholar
  177. Ziegler, H.: Carbon-and hydrogen-isotope discrimination in crassulacean acid metabolism.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 336-348. Springer-Verlag, Berlin 1996.Google Scholar
  178. Zotz, G., Winter, K.: Seasonal changes in daytime versus night-time CO2 fixation of Clusia uvitana in situ.-In: Winter, K., Smith, J.A.C. (ed.): Crassulacean Acid Metabolism. Biochemistry, Ecophysiology, and Evolution. Pp. 312-323. Springer-Verlag, Berlin 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • O.H. Sayed
    • 1
  1. 1.Department of Botany, Faculty of ScienceUniversity of MiniaMiniaEgypt

Personalised recommendations