Environmental Monitoring and Assessment

, Volume 79, Issue 2, pp 193–215 | Cite as

Assessment of Contamination and Biomarker Responses in Two Species of Herons on the St. Lawrence River

  • Louise Champoux
  • Jean Rodrigue
  • Jean-Luc DesGranges
  • Suzanne Trudeau
  • Alice Hontela
  • Monique Boily
  • Philip Spear
Article

Abstract

This study was undertaken to validate potential biomarkers of exposure and effects due to chemical contaminants in breedingcolonies of the Great Blue Heron and the Black-crowned Night-Heron on the St. Lawrence River. Eggs and fledglings from both species were collected from many colonies along theRiver. The fledglings from colonies in freshwater and brackishwater were more contaminated by mercury and PCBs than those from estuarine and gulf colonies. With respect to fledglings ofthe two heron species, some morphometric and blood biochemicalmeasurements, including plasma thyroid hormones and retinol, were significantly different among colonies. Significant differences were also observed in liver retinoids, EROD and porphyrins among colonies. The results of this study suggestthat plasma retinoids and thyroid hormones are good biomarkersof exposure and effects, and are sufficiently sensitive to reflect local and regional variations in contamination. Along with the measure of contaminants in egg and plasma, they constitute non-invasive biomarkers which represent an importantcriteria for long term monitoring of wildlife species. It is concluded that the Great Blue Heron is an appropriate sentinelspecies in the surveillance network for the St. Lawrence River.

Black-crowned Night-Heron contaminants Great Blue Heron St. Lawrence River thyroid hormones vitamin A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankley, G. T. and Giesy, J. P.: 1998, ‘Endocrine Disruptors in Wildlife: A Weight-of-Evidence Perspective’, in R. Kendall, R. Dickerson, J. Giesy and W. Suk (eds), Principles and Processess for Evaluating Endocrine Disruption in Wildlife, Proceedings from Principles and processess for evaluating endocrine disruption in wildlife, March 1996, Kiawah Island SC, Pensacola FL, Society of Environmental Toxicology and Chemistry (SETAC), pp. 349–367.Google Scholar
  2. Bellward, G. D., Norstrom, R. J., Whitehead, P. E., Elliott, J. E., Bandiera, S. M., Dworschak, C., Chang, T., Forbes, S., Cadario, B., Hart, L. E. and Cheng, K. M.: 1990, ‘Comparison of polychlorinated dibenzodioxin levels with hepatic mixed function oxidase induction in Great Blue Herons’, J. Toxicol. Environ. Health 30, 33–52.Google Scholar
  3. Bishop, C. A., Mahony, N. A., Trudeau, S. and Pettit, K. E.: 1999, ‘Reproductive success and biochemical effects in Tree Swallows (Tachycineta bicolor) exposed to chlorinated hydrocarbon contaminants in wetlands of the Great Lakes and St. Lawrence River Basin, U.S.A. and Canada’, Environ. Toxicol. Chem. 18(2), 263–271.Google Scholar
  4. Blus, L. J., Henny, C. J., Anderson, A. and Fitzner, R. E.: 1985, ‘Reproduction, mortality, and heavy metal concentrations in Great Blue Herons from three colonies in Washington and Idaho’, Colon. Waterbirds 8(2), 110–116.Google Scholar
  5. Blus, L. J., Henny, C. J., Hoffman, D. J. and Grove, R. A.: 1995, ‘Accumulation in and effects of lead and cadmium on waterfowl and passerines in northern Idaho’, Environ. Pollut. 89(3), 311–318.Google Scholar
  6. Boily, M. H., Champoux, L., Bourbonnais, D. H., DesGranges, J.-L., Rodrigue, J. and Spear, P. A.: 1994, ‘B-carotene and retinoids in eggs of Great Blue Herons (Ardea herodias) in relation to St. Lawrence River contamination’, Ecotoxicology 3, 271–286.Google Scholar
  7. Bosveld, A. T. C., Gradener, J., Murk, A. J., Brouwer, A., Van Kampen, M., Evers, E. H. G. and Van den Berg, M.: 1995, ‘Effects of PCDDs, PCDFs and PCBs in Common tern (Sterna hirundo) breeding in estuarine and coastal colonies in The Netherlands and Belgium’, Environ. Toxicol. Chem. 14(1), 99–115.Google Scholar
  8. Boyer, P. M., Ndayibagira, A. and Spear, P. A.: 2000, ‘Dose-dependent stimulation of hepatic retinoic acid hydroxylation/oxidation and glucuronidation in brook trout, Salvelinus fontinalis, after exposure to 3,3′,4,4′-tetrachlorobiphenyl’, Environ. Toxicol. Chem. 19(3), 700–705.Google Scholar
  9. Branchaud, A., Gendron, A., Fortin, R., Anderson, P. D. and Spear, P. A.: 1995, ‘Vitamin A stores, teratogenesis and EROD activity in white sucker, Catostomus commersoni, from Rivière des Prairies near Montreal and a reference site’, Can. J. Fish. Aquat. Sci. 52, 1703–1713.Google Scholar
  10. Custer, T.W., Hines, R. K., Melancon, M. J., Hoffman, D. J., Wickliffe, J. K., Bickham, J.W., Martin, J. W. and Henshel, D. S.: 1997, ‘Contaminant concentrations and biomarker response in Great Blue Heron eggs from 10 colonies on the upper Mississippi River, U.S.A.’, Environ. Toxicol. Chem. 16(2), 260–271.Google Scholar
  11. DesGranges, J.-L.: 1979, ‘A Canadian program for surveillance of Great Blue Heron (Ardea herodias) populations’, Proc. Colon. Waterbird Group 3, 59–68.Google Scholar
  12. Dieter, M. P.: 1974, ‘Plasma enzyme activities in Coturnix Quail fed graded doses of DDE, polychlorinated biphenyl, malathion and mercuric chloride’, Toxicol. Appl. Pharmacol. 27, 86–98.Google Scholar
  13. Eisler, R.: 1986, Polychlorinated Biphenyl Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review, U.S. Fish and Wildlife Service Biol. Rep., 85 (1.7), 72 pp.Google Scholar
  14. Elliott, J. E., Butler, R. W., Norstrom, R. J. and Whitehead, E.: 1989, ‘Environmental contaminants and reproductive success of Great Blue Herons, Ardea herodias, in British Columbia, 1986¶1987’, Environ. Pollut. 59, 91–114.Google Scholar
  15. Environment Canada: 1992a, Extraction and HPLC Analysis of Vitamin A (Retinol and Retinyl Palmitate) in Liver Samples, Biomarker laboratory, National wildlife research Centre, Canadian Wildlife Service, Hull, Québec.Google Scholar
  16. Environment Canada: 1992b, Extraction and HPLC Analysis of Retinol in Plasma Samples, Biomarker laboratory, National wildlife research Centre, Canadian Wildlife Service, Hull, Québec.Google Scholar
  17. Fairbrother, A.: 1993, ‘Clinical Biochemistry’, in M. C. Fossi and C. Leonzio (eds), Nondestructive Biomarkers in Vertebrates, Lewis Publishers, CRC Press, pp. 63–89.Google Scholar
  18. Feeley, M. M.: 1995, ‘Biomarkers for Great Lakes priority contaminants: Halogenated aromatic hydrocarbons (Review)’, Environ. Health Perspect. 103(9), 7–16.Google Scholar
  19. Ferrando, M. D. and Andreu-Moliner, E.: 1991, ‘Effect of lindane on the blood of a freshwater fish’, Bull. Environ. Contam. Toxicol. 47, 465–470.Google Scholar
  20. Fossi, M. C. and Leonzio, C.: 1993, Nondestructive Biomarkers in Vertebrates, Lewis Publishers, CRC Press, 345 pp.Google Scholar
  21. Fowler, M. E.: 1986, Zoo and Wild Animal Medicine, W.B. Saunders Company, 1127 pp.Google Scholar
  22. Fox, G. A.: 1993, ‘What have biomarkers told us about the effects of contaminants on the health of fish-eating birds in the Great Lakes? The theory and a literature review’, J. Great Lakes Res. 19(4), 722–736.Google Scholar
  23. Fox, G. A., Kennedy, S. E., Norstrom, R. J. and Wingfield, D. C.: 1988, ‘Porphyria in Herring Gulls: A biochemical response to chemical contamination of Great Lakes food chains’, Environ. Toxicol. Chem. 7, 831–839.Google Scholar
  24. Fox, G. A., Kennedy, S. E. and Trudeau, S.: 1997, ‘Hepatic porphyrin patterns in birds as a promising measure of effect and bioavailability of PCBs and other HAHs in water and sediments’, Organohalogen Compounds 33, 366–370.Google Scholar
  25. Gonzalez, M. and Tejedor, M. C.: 1992, ‘d-ALAD activity variations in red blood cells in response to lead accumulation in Rock Doves (Columbia livia), Bull. Environ. Contam. Toxicol. 49, 527–534.Google Scholar
  26. Grasman, K. A., Fox, G. A., Scanlon, P. F. and Ludwig, J. P.: 1996, ‘Organochlorine-associated immunosuppression in prefledgling Caspian terns and Herring Gulls from the Great Lakes: An epidemiological study’, Environ. Health Perspect. 104(4), 829–842.Google Scholar
  27. Grasman, K. A., Scanlon, P. F. and Fox, G. A.: 1998, ‘Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes ¶ A review of historical trends’, Environ. Monit. Assess. 53(1), 117–145.Google Scholar
  28. Hart, L. E., Cheng, K. M., Whitehead, P. E., Shah, R. M., Lewis, R. J., Ruschkowski, S. R., Blair, R. W., Bennett, D. C., Bandiera, S. M., Norstrom, R. J. and Bellward, G. D.: 1991, ‘Dioxin contamination and growth and development in Great Blue Heron embryos’, J. Toxicol. Environ. Health 32, 331–344.Google Scholar
  29. Hebert, C. E., Norstrom, R. J. and Weseloh, D. V. C.: 1999, A Quarter Century of Environmental Surveillance: The Canadian Wildlife Service's Great Lakes Herring Gull Monitoring Program, NRC-CNRC Environmental Reviews, 7, pp. 147–166.Google Scholar
  30. Hoffman, D. J., Rattner, B. A., Bunck, C. M., Krynitsky, A., Ohlendorf, H. M. and Lowe, R. W.: 1986, ‘Association between PCBs and lower embryonic weight in Black-crowned Night-Herons in San Francisco Bay’, J. Toxicol. Environ. Health 19, 383–391.Google Scholar
  31. Hoffman, D. J., Smith, G. J. and Rattner, B. A.: 1993, ‘Biomarkers of contaminant exposure in Common Terns and Black-crowned Night-Herons in the Great Lakes’, Environ. Toxicol. Chem. 12, 1095–1103.Google Scholar
  32. Janz, D.M. and Bellward, G. D.: 1996, ‘In ovo 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure in three avian species. 1. Effects on thyroid hormones and growth during the perinatal period’, Toxicol. Appl. Pharmacol. 139, 281–291.Google Scholar
  33. Jensen, B. M., Nilssen, V. H., Murvoll, K. M. and Skaare, J. U.: 2001, ‘PCBs, TEQs and plasma retinol in grey heron (Ardea cinerea) hatchlings from two rookeries in Norway’, Chemosphere 44, 483–489.Google Scholar
  34. Kennedy, S. W. and James, C. A.: 1993, J. Chromatogr. 619, 127–132.Google Scholar
  35. Kennedy, S. W., Fox, G. A., Trudeau, S., Bastien, L. J. and Jones, S. P.: 1998, ‘Highly carboxylated porphyrin concentration: A biochemical marker of PCB exposure in herring Gulls’, Mar. Environ. Res. 46(1¶5), 65–69.Google Scholar
  36. Laporte, P.: 1982, ‘Organochlorine residues and eggshell measurements of Great Blue Heron eggs from Quebec’, Colon. Waterbirds 5, 95–103.Google Scholar
  37. Metcalfe, T. L. and Metcalfe, C. D.: 1997, ‘The trophodynamics of pcbs, including mono-and non-ortho congeners, in the food web of north-central Lake Ontario’, Sci. Tot. Environ. 201(3), 245–272.Google Scholar
  38. Murk, A. J., Bosveld, A. T. C., Van den Berg, M. and Brouwer, A.: 1994, ‘Effects of polyhalogenated aromatic hydrocarbons (PHAHs) on biochemical parameters in chicks of the Common Tern (Sterna hirundo), Aqua. Toxicol. 30, 91–115.Google Scholar
  39. Murk, A. J., Boudewijn, T. J., Meininger, P. L., Bosveld, A. T. C., Rossaert, G., Ysebaert, T., Meire, P. and Dirksen, S.: 1996, ‘Effects of polyhalogenated aromatic hydrocarbons and related contaminants on Common Tern reproduction: Integration of biological, biochemical, and chemical data’, Arch. Environ. Contam. Toxicol. 31, 128–140.Google Scholar
  40. Murvoll, K. M., Skaare, J. U., Nilssen, V. H., Bech, C., Ostnes, J. E. and Jenssen, B. M.: 1999, ‘Yolk PCB and plasma retinol concentrations in shag (Phalacrocorax aristotelis) hatchlings’, Arch. Environ. Contam. Toxicol. 36(3), 308–315.Google Scholar
  41. Newman, S. H., Piatt, J. F. and White, J.: 1997, ‘Hematological and plasma biochemical reference ranges of Alaskan seabirds: Their ecological significance and clinical importance’, Colon. Waterbirds 20(3), 492–504.Google Scholar
  42. Pain, D. J.: 1989, ‘Haematological parameters as predictors of blood lead and indicators of lead poisoning in the Black Duck (Anas rubripes)’, Environ. Pollut. 60, 67–81.Google Scholar
  43. Peakall, D. B., Norstrom, R. J., Rahimtula, A. D. and Butler, R. D.: 1986, ‘Characterization of mixed-function oxidase systems of the nestling Herring Gull and its implications for bioeffects monitoring’, Environ. Toxicol. Chem. 5, 379–385.Google Scholar
  44. Pohl, F. J. and Fouts, J. R.: 1980, ‘A rapid method for assaying the metabolism of 7-Ethoxyresorufin by microsomal subcellular fractions’, Anal. Biochem. 107, 150–155.Google Scholar
  45. Polo, F. J., Celdran, J., Viscor, G., Palomeque, J.: 1994, ‘Blood chemistry of captive herons, egrets, spoonbill, ibis and gallinule’, Comp. Biochem. Physiol. 107A(2), 343–347.Google Scholar
  46. Quinney, T. E.: 1982, ‘Growth, diet, and mortality of nestling Great Blue Herons’, Wilson Bull. 94(4), 571–577.Google Scholar
  47. Rattner, B. A., Melancon, M. J., Rice, C. P., Riley, W., Eisemann, J. and Hines, R. K.: 1997, ‘Cytochrome P450 and organochlorine contaminants in Black-crowned Night-Herons from the Chesapeake Bay region, U.S.A.’, Environ. Toxicol. Chem. 16(11), 2315–2322.Google Scholar
  48. Rattner, B. A., Hatfield, J. S., Melancon, M. J., Custer, T.W. and Tillitt, D. E.: 1994, ‘Relation among cytochrome P-450, AH-active PCB congeners and dioxin equivalents in Pipping Black-crowned Night-Heron embryos’, Environ. Toxicol. Chem. 13(11), 1805–1812.Google Scholar
  49. Rattner, B. A., Eroschenko, V. P., Fox, G. A., Fry, D. M. and Gorsline, J.: 1984, ‘Avian endocrine response to environmental pollutants’, J. Exper. Zool. 232, 683–689.Google Scholar
  50. Ronis, M. J., Walker, J. C. H. and Peakall, D.: 1987, ‘Hepatic metabolism of cyclodiene pesticides by constitutive forms of cytochrome p-450 from lower vertebrates’, Comp. Biochem. Physiol. 87c(2), 375–388.Google Scholar
  51. Sanderson, J. T., Janz, D. M., Bellward, G. D. and Giesy, J. P.: 1997, ‘Effects of embryonic and adult exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on hepatic microsomal testosterone hydroxylase activities in Great Blue Herons (Ardea herodias), Environ. Toxicol. Chem. 16(6), 1304–1310.Google Scholar
  52. Scheuhammer, A. M.: 1987, ‘Erythrocyte d-aminolevulinic acid dehydratase in birds. I. The effects of lead and other metals in vitro’, Toxicology 45, 155.Google Scholar
  53. Scheuhammer, A. M.: 1989, ‘Monitoring wild bird populations for lead exposure’, J. Wild. Manage. 53(3), 759–765.Google Scholar
  54. Sepulveda, M. S., Frederick, P. C., Spalding, M. G. and Williams, G. E.: 1999, ‘Mercury contamination in free-ranging great egret nestlings (Ardea albus) from southern Florida, U.S.A.’, Environ. Toxicol. Chem. 18(5), 985–992.Google Scholar
  55. Spear, P. A., Moon, T. W. and Peakall, D. B.: 1986, ‘Liver retinoid concentrations in natural populations of Herring gulls (Larus argentatus) contaminated by 2,3,7,8-tetrachlorodibenzo-p-dioxin and in Ring doves (Streptopelia risoria) injected with a dioxin analogue’, Can. J. Zool. 64, 204–208.Google Scholar
  56. Thomas, C. M., Anthony, R. G.: 1999, ‘Environmental contaminants in Great Blue Herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, U.S.A.’, Environ. Toxicol. Chem. 18(12), 2804–2816.Google Scholar
  57. Van den Berg, M., Craane, B. L. H. J., Sinnige, T., Van Mourok, S., Dirksen, S., Boudewijn, T., Van der Gaag, M., Lutke-Schipolt, I. J., Spenkelink, B. and Brouwer, A.: 1994, ‘Biochemical and toxic effects of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in the Cormorant (Phalacrocorax carbo) after in ovo exposure’, Environ. Toxicol. Chem. 13(5), 803–816.Google Scholar
  58. Zar, J. H.: 1984, Biostatistical Analysis, 2nd ed., Prentice-Hall Inc., Englewood Cliffs, New-Jersey, 718 pp.Google Scholar
  59. Zile, M. H.: 1992, ‘Vitamin A homeostasis endangered by environmental pollutants’, Proc. Soc. Exp. Biol. Med. 201(2), 141–153.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Louise Champoux
    • 1
  • Jean Rodrigue
    • 1
  • Jean-Luc DesGranges
    • 1
  • Suzanne Trudeau
    • 2
  • Alice Hontela
    • 3
  • Monique Boily
    • 3
  • Philip Spear
    • 3
  1. 1.Canadian Wildlife ServiceEnvironment CanadaSte-FoyCanada
  2. 2.National Wildlife Research CentreEnvironment CanadaHullCanada
  3. 3.Département des sciences biologiquesUniversité du Québec à Montréal, succ. AMontréalCanada

Personalised recommendations