, Volume 61, Issue 1, pp 1–19 | Cite as

Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand

  • Fumiko Nakagawa
  • Naohiro Yoshida
  • Atsuko Sugimoto
  • Eitaro Wada
  • Takahito Yoshioka
  • Shingo Ueda
  • Pisoot Vijarnsorn


Stable isotopes (δ13C, δD) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean δ13C; −51.5 ±7.1‰ and−56.5 ± 4.6‰ for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(− 63 ± 5‰). Large seasonal variation was observed inδ13C(∼32‰) in the rice paddies, whereas variationinδD was much more smaller (∼20‰), indicating that variation inδ13C is due mainly to changes in methane production pathways.Values of δ13C were lower in swamps (−66.1 ±5.1‰)than in rice paddies. The calculated contribution of acetate fermentation fromδ13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). δDin methane from Thai rice paddies (−324± 7‰ (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from−362 ± 5‰ (Mito: n=2) to −322 ± 8‰(Okinawa: n=3), due tohigher δD in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).

Methane Radiocarbon Rice paddy Stable carbon isotope Stable hydrogen isotope Tropical swamp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin M.J.,Blair N.E.,Albert D.B.,Hoehler T.M. andMartens C.S. 1992. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Global Biogeochem. Cycles 6: 271-291.Google Scholar
  2. Alperin M.J.,Reeburgh S. andWhiticar M.J. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem. Cycles 2: 279-288.Google Scholar
  3. Avery G.B.,Shannon R.D.,White J.R.,Martens C.S. andAlperin M.J. 1999. Effect of seasonal changes in the patheways of methanogenesis on the _13C values of pore water methane in a Michigan peatland. Global Biogeochem. Cycles 13: 475-484.Google Scholar
  4. Barker T.F. andFritz P. 1981. Carbon isotope fractionation during microbial methane oxidation. Nature 239: 289-291.Google Scholar
  5. Bellisario L.M.,Bubier J.L. andMoore T.R. 1999. Controls on CH4 emissions from a northern peatland. Global Biogeochem. Cycles 13: 81-91.Google Scholar
  6. Bergamaschi P. 1997. Seasonal variations of stable hydrogen and carbon isotope ratios in methane from a Chinese rice paddy. J. Geophys. Res. 102: 25383-25393.Google Scholar
  7. Blair N.E. andCarter W.D. 1992. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment. Geochim. Cosmochim. Acta 56: 1247-1258.Google Scholar
  8. Botz R.,Pokojski H.,Schmitt M. andThomm M. 1996. Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction. Org. Geochem. 25: 255-262.Google Scholar
  9. Chanton J.P.,Bauer J.E.,Glaser P.A.,Siegel D.I.,Kelly C.A.,Tyler S.C. et al. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minesota peatlands. Geochim. Cosmochim. Acta 59: 3663-3668.Google Scholar
  10. Chanton J.P. andMartens C.S. 1988. Seasonal variations in ebullitive flux and carbon isotopic composition of methane in a tidal freshwater estuary. Global Biogeochem. Cycles 2: 289-298.Google Scholar
  11. Chanton J.P.,Martens C.S. andKelley C.A. 1989. Gas transport from methane-saturated tidal freshwater and wetland sediments. Limnol. Oceanogr. 34: 807-819.Google Scholar
  12. Chanton J.P.,Whiting G.J.,Blair N.E.,Lindau C.W. andBollich P.K. 1997. Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cycles 11: 15-27.Google Scholar
  13. Cicerone R.J. andOremland R.S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2: 299-327.Google Scholar
  14. Coleman D.D.,Risatti B.J. andSchoell M. 1981. Fraction of carbon and hydrogen isotopes by methaneoxidizing bacteria. Geochim. Cosmochim. Acta 45: 1033-1037.Google Scholar
  15. Coleman M.L.,Shepherd T.J.,Durham J.J.,Rouse J.E. andMoore G.R. 1982. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54: 993-995.Google Scholar
  16. Conrad R. 1989. Control of methane production in terrestrial ecosystems. In: Andreae M.O. andSchimel D.S. (eds), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons. Inc., New York, 39-58.Google Scholar
  17. Craig H. andChou C.C. 1982. Methane: The record in polar ice cores. Geophys. Res. Lett. 9: 1221-1224.Google Scholar
  18. Daniels L.,Fulton G.,Spencer R.W. andOrme-Johnson W.H. 1980. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum. J. Bacteriol. 141: 694-698.Google Scholar
  19. Davis J.B. andYarbrough H.E. 1966. Anaerobic oxidation of hydrocarbons by desulfovibro desulfuricans. Chem. Geol. 1: 137-144.Google Scholar
  20. Etheridge D.M.,Steele L.P.,Francey R.J. andLangenfelds R.L. 1998. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103: 15979-15993.Google Scholar
  21. FAO 1988. FAO Production Yearbook. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  22. Gelwicks J.T.,Risatti J.B. andHayes J.M. 1994. Carbon isotope effects associated with aceticlastic methanogenesis. Appl. Environ. Microbiol. 60: 467-472.Google Scholar
  23. Happell J.D.,Chanton J.P. andShowers W.S. 1994. The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim. Cosmochim. Acta 58: 4377-4388.Google Scholar
  24. IPCC 1994. Climate change 1994. Radiative forcing of climate change and evolution of the IPCC IS93 emission scenarios. In: Houghton J.T. (ed.). Cambridge University, Cambridge.Google Scholar
  25. Kitagawa H.,Masuzawa T.,Nakamura T. andMatsumoto E. 1993. A batch preparation method for graphite targets with low background for AMS 14C measurements. Radiocarbon 35: 295-300.Google Scholar
  26. Koyama T. 1963. Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J. Geophys. Res. 68: 3971-3973.Google Scholar
  27. Krzycki J.A.,Kenealy W.R.,DeNiro M.J. andZeikus J.G. 1987. Stable carbon isotope fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or carbon dioxide-hydrogen. Appl. Environ. Microbiol. 53: 2597-2599.Google Scholar
  28. Lansdown J.M.,Quay P.D. andKing S.L. 1992. CH4 production via CO2 reduction in a temperate bog: A source of 13C-depleted CH4. Geochim. Cosmochim. Acta 56: 3493-3503.Google Scholar
  29. Levin I.,Bosinger R.,Bonani G. andFrancey R.J. 1992. Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In: Taylor R.E.,Long A. andCra R. (eds), Radiocarbon After Four Decades. Springer-Verlag, NewYork, 503-518.Google Scholar
  30. Lowe D.C.,Brenninkmeijer C.A.M.,Manning M.R.,Sparks R. andWallace G. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature 332: 522-525.Google Scholar
  31. Martens C.S.,Kelley C.A. andChanton J.P. 1992. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, western Alaska. J. Geophys. Res. 97: 16689-16701.Google Scholar
  32. Moore T.R. andRoulet N.T. 1993. Methane flux: Water table relations in northern wetlands. Geophys. Res. Lett. 20: 587-590.Google Scholar
  33. Nakagawa F.,Yoshida N.,Nojiri Y. andMakarov V.N. 2002. Production of methane from alasses in eastern Siberia; implication from its 14C and stable isotopic compositions. Global Biogeochem. Cycles (in press).Google Scholar
  34. Pearman G.I.,Etheridge D.,Silva F. andFraser P.J. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature 320: 248-250.Google Scholar
  35. Pine M.J. andBarker H.A. 1956. Studies on methane fermentation VII. The pathway of hydrogen in methane fermentation. J. Bacteriol. 71: 644-648.Google Scholar
  36. Quay P.D.,King S.L.,Stutsman J.,Wilbur D.O.,Steele L.P.,Fung I. et al. 1991. Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochem. Cycles 5: 25-47.Google Scholar
  37. Quay P.D.,Kings S.L.,Landsdown J.M. andWilbur D.O. 1988. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane. Global Biogeochem. Cycles 2: 385-397.Google Scholar
  38. Rasmussen R.A. andKhalil M.A.K. 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. J. Geophys. Res. 89: 11599-11605.Google Scholar
  39. Rudd J.W.M.,Hamilton R.D. andCampbell N.E.R. 1974. Measurements of the microbial oxidation of methane in lake water. Limnol. Oceanog. 19: 519-524.Google Scholar
  40. Stauffer B.,Fischer G.,Neftel A. andOeschger H. 1985. Increase of atmospheric methane recorded in Antarctic ice core. Science 229: 1386-1388.Google Scholar
  41. Stevens C.M. andEngelkemeir A. 1988. Stable carbon isotopic composition of methane from some natural and anthropogenic sources. J. Geophys. Res. 93: 725-733.Google Scholar
  42. Sugimoto A.,Hong X. andWada E. 1991. Rapid and simple measurement of carbon isotope ratio of bubble methane using GC/C/IRMS. Mass Spectrometry 39: 261-266.Google Scholar
  43. Sugimoto A. andWada E. 1995. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation. Geochim. Cosmochim. Acta 59: 1329-1337.Google Scholar
  44. Sugimoto A. andWada E. 1993. Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2/H2. Geochim. Cosmochim. Acta 57: 4015-4027.Google Scholar
  45. Tyler S.C.,Blake D.R. andRowland F.S. 1987. 13C/12C ratio in methane from the flooded Amazon forest. J. Geophys. Res. 92: 1044-1048.Google Scholar
  46. Tyler S.C.,Brailsford G.W.,Yagi K.,Minami K. andCicerone R.J. 1994. Seasonal variations in methane flux and _13CH4 values for rice paddies in Japan and their implications. Global Biogeochem. Cycles 8: 1-12.Google Scholar
  47. Tyler S.C.,Crill P.M. andBrailsford G.W. 1994. 13C/12C fractionation of methane during oxidation in a temperate forested soil. Geochim. Cosmochim. Acta 58: 1625-1633.Google Scholar
  48. Tyler S.C.,Zimmerman P.R.,Cumberbatch C.,Greenberg J.P.,Westberg C. andDarington J.P.E.C. 1988. Measurements and interpretation of _13C of methane from termites, rice paddies, and wetlands in Kenya. Global Biogeochem. Cycles 2: 341-355.Google Scholar
  49. Ueda S.,Chun-SimU Go,Yoshioka T.,Yoshida N.,Wada E.,Miyajima T. et al. 2000. Dynamics of dissolved O2, CO2, CH4, and N2O in a tropical coastal swamp in southern Thailand. Biogeochemistry 49: 191-215.Google Scholar
  50. Uzaki M.,Mizutani H. andWada E. 1991. Carbon isotope composition of CH4 from rice paddies in Japan. Biogeochemistry 13: 159-175.Google Scholar
  51. Vijarnsorn P. 1992. Problems related to coastal swamp land development in southern Thailand. In: Kyuma K.,Vijarnson P. andZakaria A. (eds), Coastal Lowland Ecosystems in Southern Thailand and Malaysia. Showado, Kyoto, 3-16.Google Scholar
  52. Wada E.,Vijarnsorn P.,Yoshida N.,Yoshioka T.,Sugimoto A.,Ueda S. et al. 1995. Radiatively active gases in tropical swamp forest and wetland soils 1: An overview. In: Vijarnsorn P.,Suzuki K.,Kyuma K.,Wada E.,Nagano T. andTakai Y. (eds), Reports of A Nes Program for Creative Basic Research Studies of Global Environment Change with special reference to Asia and Pasific Resions “A tropical swamp forest ecosystem and its greenhouse gas emission”. Nodai Research Institute, Tokyo University of Agriculture, 79-88.Google Scholar
  53. Wahlen M.,Tanaka N.,Henry R.,Deck B.,Zeglen J.,Vogel J.S. et al. 1989. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon. Science 245: 286-290.Google Scholar
  54. Waldron S.,Hall A.J. andFallick A.E. 1999. Engimatic stable isotope dynamics of deep peat methane. Global Biogeochem. Cycles 13: 93-100.Google Scholar
  55. Waldron S.,Watson-Craik I.A.,Hall A.J. andFallick A.E. 1998. The carbon and hydrogen stable isotope composition of bacteriogenic methane: A laboratory study using a landfill inoculum. Geomicrobiol 15: 157-169.Google Scholar
  56. Whiticar M.J.,Faber E. andSchoell M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim. Cosmochim. Acta 50: 693-709.Google Scholar
  57. Winfrey M.R. andZeikus J.G. 1977. Effects of sulphate on carbon and electron flow during microbial ethanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33: 275-281.Google Scholar
  58. Winfrey M.R. andWard D.M. 1983. Substrates for sulfate reduction and methane production in intertidal sediments. Appl. Environ. Microbiol. 45: 193-199.Google Scholar
  59. Woltemate I.,Whiticar M.J. andSchoell M. 1984. Carbon and hydrogen isotopic composition of bacterial methane in shallow freshwater lake. Limnol. Oceanogr. 29: 985-992.Google Scholar
  60. Yurtsever Y. andGat J.R. 1981. Atmospheric Waters. In: Gat J.R. andGoufiantini R. (eds), Stable Isotope Hydrology. IAEA, Vienna, 103-142.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Fumiko Nakagawa
    • 1
  • Naohiro Yoshida
    • 1
  • Atsuko Sugimoto
    • 2
  • Eitaro Wada
    • 2
  • Takahito Yoshioka
    • 1
  • Shingo Ueda
    • 3
  • Pisoot Vijarnsorn
    • 4
  1. 1.Institute for Hydrospheric-Atmospheric SciencesNagoya UniversityChikusaku, NagoyaJapan
  2. 2.Center for Ecological ResearchKyoto UniversityOtsuJapan
  3. 3.National Institute for Resources and EnvironmentTsukubaJapan
  4. 4.Department of Land DevelopmentMinistry of Agriculture and CooperativesChatuchuckThailand

Personalised recommendations