Neurochemical Research

, Volume 27, Issue 7–8, pp 575–581 | Cite as

Cationic Glycosphingolipids in Neuronal Tissues and Their Possible Biological Significance

  • Toshiyuki Hikita
  • Keiko Tadano-Aritomi
  • Naoko Iida-Tanaka
  • Steven B. Levery
  • Ineo Ishizuka
  • Senitiroh Hakomori


During the course of studies on natural occurrence of sphingosine base in brain, cationic glycosphingolipids bound to carboxymethyl-Sephadex and eluted with triethylamine in organic solvents were isolated and characterized. Four classes of compounds were identified: (i) plasmalopsychosine-A and -B; (ii) glyceroplasmalopsychosine; (iii) glycosphingolipids having de-N-acetyl-hexosamine, e.g., de-N-acetyl-Lc3Cer; (iv) glycosylsphingosine, i.e., lysoglycosphingolipid. Only two kinds, galactosylsphingosine (psychosine) and lactosylsphingosine, were found to occur naturally in brain. All these compounds were isolated from extract of brain white matter. Their occurrence, quantity, and distribution pattern differ from one species to another. Their quantity is much lower than that of regular acidic and neutral glycosphingolipids. They may interact with regular glycosphingolipids in glycosphingolipid-enriched microdomains to elicit signal transduction, to modify cellular phenotype, although studies along this line are highly limited at this time.

Positively charged glycosphingolipid plasmalopsychosine-A and -B glyceroplasmalopsychosine de-N-acetyl-hexosamine lysoglycosphingolipid signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hannun, Y. A., Loomis, C. R., Merrill, A. H. J., and Bell, R. M. 1986. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem. 261:12604-12609.Google Scholar
  2. 2.
    Merill, A. H. J., Nimkar, S., Menaldino, D., Hannun, Y. A., Loomis, C. R., Bell, R. M., Tyagi, S. R., Lambeth, J. D., Stevens, V. L., Hunter, R., and Liotta, D. C. 1989. Structural requirements for long-chain (sphingoid) base inhibition of protein kinase C in vitro and for the cellular effects of these compounds. Biochemistry 28:3138-3145.Google Scholar
  3. 3.
    Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., El-Ghendy, K., and Racker, E. 1989. Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry 28:6796-6800.Google Scholar
  4. 4.
    Igarashi, Y., Kitamura, K., Toyokuni, T., Dean, B., Fenderson, B. A., Ogawa, T., and Hakomori, S. 1990. A specific enhancing effect of N,N-dimethylsphinogosine on epidermal growth factor receptor autophosphorylation: Demonstration of its endogenous occurrence (and the virtual absence of unsubstituted sphingosine) in human epidermoid carcinoma A431 cells. J. Biol. Chem. 265:5385-5389.Google Scholar
  5. 5.
    Hannun, Y. A. 1997. Sphingolipid-mediated signal transduction. Austin, TX: R. G. Landes Co.Google Scholar
  6. 6.
    Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. 1998. A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforns of 14-3-3 protein. J. Biol. Chem. 273:21834-21845.Google Scholar
  7. 7.
    Megidish, T., Takio, K., Titani, K., Iwabuchi, K., Hamaguchi, A., Igarashi, Y., and Hakomori, S. 1999. Endogenous substrates of sphingosine-dependent kinases (SDKs) are chaperone proteins: Heat shock proteins, glucose-regulated proteins, protein disulfide isomerase, and calreticulin. Biochemistry 38:3369-3378.Google Scholar
  8. 8.
    Cuvillier, O., Edsall, L., and Spiegel, S. 2000. Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J. Biol. Chem. 275:15691-15700.Google Scholar
  9. 9.
    Kannagi, R., Nudelman, B. D., Levery, S. B., and Hakomori, S. 1982. A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1. J. Biol. Chem. 257:14865-14874.Google Scholar
  10. 10.
    Folch, J., Arsove, S., and Meath, J. A. 1951. Isolation of brain strandin, a new type of large molecule tissue component. J. Biol. Chem. 191:819-831.Google Scholar
  11. 11.
    Nudelman, E. D., Levery, S. B., Igarashi, Y., and Hakomori, S. 1992. Plasmalopsychosine, a novel plasmal (fatty aldehyde) conjugate of psychosine with cyclic acetal linkage: Isolation and characterization from human brain white matter. J. Biol. Chem. 267:11007-11016.Google Scholar
  12. 12.
    Levery, S. B., Nudelman, E. D., and Hakomori, S. 1992. Novel modification of glycosphingolipids by long-chain cyclic acetals: Isolation and characterization of plasmalocerebroside from human brain. Biochemistry 31:5335-5340.Google Scholar
  13. 13.
    Taketomi, T., Hara, A., Uemura, K., and Sugiyama, E. 1998. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of glycosphingolipids including gangliosides. Acta Biochim. Polon. 45:987-999.Google Scholar
  14. 14.
    Yachida, Y., Kashiwaga, M., Mikami, T., Tsuchihashi, K., Daino, T., Akino, T., and Gasa, S. 1998. Stereochemical structures of synthesized and natural plasmalogalactosylceramides from equine brain. J. Lipid Res. 39:1039-1045.Google Scholar
  15. 15.
    Sadozai, K. K., Levery, S. B., Anand, J. K., and Hakomori, S. 1996. Model compounds for plasmaloglycolipids: Preparation of long chain cyclic acetals of methyl β-D-galactopyranoside and determination of their regio-and stereochemistry by proton NMR. J. Carbohydr. Chem. 15:715-725.Google Scholar
  16. 16.
    Yachida, Y., Kashiwagi, M., Mikami, T., Tsuchihashi, K., Daino, T., Akino, T., and Gasa, S. 1999. Novel plasmalogalactosylalkylglycerol from equine brain. J. Lipid Res. 40:2271-2278.Google Scholar
  17. 17.
    Hamasaki, H., Aoyagi, M., Kasama, T., Handa, S., Hirakawa, K., and Taki, T. 1999. GT1b in human metastatic brain tumors: GT1b as a brain metastasis-associated ganglioside. Biochim. Biophys. Acta 1437:93-99.Google Scholar
  18. 18.
    Hikita, T., Tadano-Aritomi, K., Iida-Tanaka, N., Anand, J. K., Ishizuka, I., and Hakomori, S. 2001.A novel plasmal conjugate to glycerol and psychosine (“glyceroplasmalopsychosine”): Isolation and characterization from bovine brain white matter. J. Biol. Chem. 276:23084-23091.Google Scholar
  19. 19.
    Domon, B. and Costello, C. E. 1988. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5:397-409.Google Scholar
  20. 20.
    Vanier, M. T. and Svennerholm, L. 1975. Chemical pathology of Krabbe's disease. III. Ceramide-hexosides and gangliosides of brain. Acta Paediatr. Scand. 64:641-648.Google Scholar
  21. 21.
    Igisu, H. and Suzuki, K. 1984. Analysis of galactosylsphingosine (psychosine) in the brain. J. Lipid Res. 25:1000-1006.Google Scholar
  22. 22.
    Lambeth, J. D. and Ryu, S. H. 1996. Glycerolipids in signal transduction. In Biochemistry of lipids, lipoproteins and membranes, ed. D. E. Vance and J. Vance, pp. 237-255. Amsterdam: Elsevier.Google Scholar
  23. 23.
    Sakakura, C., Igarashi, Y., Anand, J. K., Sadozai, K. K., and Hakomori, S. 1996. Plasmalopsychosine of human brain mimics the effect of nerve growth factor by activating its receptor kinase and mitogen-activated protein kinase in PC12 cells: Induction of neurite outgrowth and prevention of apoptosis. J. Biol. Chem. 271:946-952.Google Scholar
  24. 24.
    Prinetti, A., Iwabuchi, K., and Hakomori, S. 1999. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells: Mechanism of ganglioside-dependent neuritogenesis. J. Biol. Chem. 274:20916-20924.Google Scholar
  25. 25.
    Megidish, T., White, T., Takio, K., Titani, K., Igarashi, Y., and Hakomori, S. 1995. The signal modulator protein 14-3-3 is a target of sphingosine-or N,N-dimethylsphingosine-dependent kinase in 3T3(A31) cells. Biochem. Biophys. Res. Commun. 216: 739-747.Google Scholar
  26. 26.
    Mano, N., Oda, Y., Yamada, K., Asakawa, N., and Katayama, K. 1997. Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal. Biochem. 244:291-300.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Toshiyuki Hikita
    • 1
    • 2
  • Keiko Tadano-Aritomi
    • 3
  • Naoko Iida-Tanaka
    • 3
  • Steven B. Levery
    • 4
  • Ineo Ishizuka
    • 3
  • Senitiroh Hakomori
    • 1
    • 2
  1. 1.Division of Biomembrane ResearchPacific Northwest Research InstituteSeattle
  2. 2.Department of PathobiologyUniversity of WashingtonSeattle
  3. 3.Department of BiochemistryTeikyo University School of MedicineTokyoJapan
  4. 4.Department of ChemistryUniversity of New HampshireDurham

Personalised recommendations