Skip to main content
Log in

High vs Low Anxiety-Related Behavior Rats: An Animal Model of Extremes in Trait Anxiety

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

In addition to their robust difference in trait anxiety, as illustrated by a variety of behavioral tests, HAB and LAB rats differ in their stress coping strategies, the former being more susceptible and vulnerable to stressor exposure and preferring more passive strategies. HAB rats of either gender show signs of a hyper-reactive hypothalamic-pituitary-adrenocortical (HPA) axis, thus resembling psychiatric patients. As shown by in situ hybridization and microdialysis in freely behaving animals, both the expression and release of vasopressin in the hypothalamic paraventricular nucleus are higher in HAB than in LAB rats, thus contributing to the HPA axis hyperdrive. Accordingly, in HAB animals, administration of a V1 receptor antagonist normalized the pathological outcome of the dexamethasone/corticotropin-releasing hormone test and triggered behavioral changes toward reduced anxiety and active stress coping. Pharmacological validation has revealed signs of depressive-like behavior, as HAB but not LAB rats have shown more active stress coping behavior and a normalized HPA axis after treatment with paroxetine. Of interest, this antidepressant reduced the hypothalamic overexpression of vasopressin; this novel mechanism of action is likely to contribute to paroxetine effects on both behavioral and neuroendocrine parameters. Cross-mating and cross-fostering paradigms showed that the divergent emotionality in HAB vs. LAB rats is determined genetically, rather than postnatally through maternal behavior. As the behavioral and neuroendocrine phenotyping pointed to the vasopressin gene as a candidate gene critically involved in anxiety, preliminary genetic approaches have been focused on this gene, revealing single nucleotide polymorphisms (SNPs) in the promotor area of the vasopressin gene in HAB, but not LAB rats. HAB/LAB rats are thus proving to be a unique animal model to identify and characterize neurobiological, neuroendocrine, and genetic correlates of trait anxiety, and perhaps depression, in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andreatini, R., Wolfman, C., Viola, H., Medina, J. H., Da Cunha, C., and Ribeiro, R. L. (1999). The “anxiety state” and its relation with rat models of memory and habituation. Neurobiol. Learn. Mem. 72:78–94.

    PubMed  Google Scholar 

  • Arborelius, L., Owens, M. J., Plotsky, P. M., and Nemeroff, C. B. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. J. Endocrinol. 160:1–12.

    PubMed  Google Scholar 

  • Beuzen, A., and Belzung, C. (1995). Link between emotional memory and anxiety states: A study by principal component analysis. Physiol. Behav. 58:111–118.

    PubMed  Google Scholar 

  • Buss, D. M. (1991). Evolutionary personality psychology. Annu. Rev. Psychol. 42:459–491.

    PubMed  Google Scholar 

  • Cahill, J., and McGaugh, J. L. (1998). Mechanism of emotional arousal and lasting memory. TINS 21:294–299.

    PubMed  Google Scholar 

  • Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., and Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl. Acad. Sci. USA 95:5335–5340.

    PubMed  Google Scholar 

  • Castanon, N., Perez-Diaz, F., and Mormède, P. (1995). Genetic analysis of the relationships between behavioral and neuroendocrine traits in Roman high and low avoidance rat lines. Behav. Genet. 25:371–384.

    PubMed  Google Scholar 

  • Carrive, P. (2000). Conditioned fear to environmental context: Cardiovascular and behavioural components in the rat. Brain Res. 858:440–445.

    PubMed  Google Scholar 

  • Chapouthier, G., Bondoux, D., Martin, B., Desforges, C., and Launay, J.-M. (1991). Genetic differences in sensitivity to b-carboline: Evidence for the involvement of brain benzodiazepine receptors. Brain Res. 553:342–346.

    PubMed  Google Scholar 

  • Clément, Y., Proeschel, M.-F., Bondoux, D., Girard F., Launay, J.-M., and Chapouthier, G. (1997). Genetic factors regulate processes related to anxiety in mice. Brain Res. 752:127–135.

    PubMed  Google Scholar 

  • Commissaris, R. L., Harrington, G. M., and Altman, H. J. (1990). Benzodiazepine anticonflict effects in Maudsley Reactive (MR/Har) and Nonreactive (MNR/Har) rats. Psychopharmacology 100:287–292.

    PubMed  Google Scholar 

  • Crabbe, J. C., Wahlsten, D., and Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science 284:1670–1672.

    PubMed  Google Scholar 

  • Driscoll, P., and Bättig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In Liebich, I. (ed.), Genetics of the Brain, Elsevier Biomed, Amsterdam, pp. 95–123.

    Google Scholar 

  • Engelmann, M., Wotjak, C. T., and Landgraf, R. (1995). Social discrimination procedure: An alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 58:351–321.

    Google Scholar 

  • Engelmann, M., Wotjak, C. T., Neumann, I., Ludwig, M., and Landgraf, R. (1996). Behavioral consequences of intracerebral vasopressin and oxytocin: Focus on learning and memory. Neurosci. Biobehav. Rev. 20:341–358.

    PubMed  Google Scholar 

  • Fernandez-Teruel, A., Escorihuela, R. M., Tobena, A., and Driscoll, P. (1991). Stress and putative endogenous ligands for benzodiazepine receptors: The importance of characteristics of the aversive situation and of differential emotionality in experimental animals. Experientia 47:1051–1056.

    PubMed  Google Scholar 

  • Gold, P. W., and Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Mol. Psychiat. 7: 254–275.

    Google Scholar 

  • Green, S., and Hodges, H. (1991). Animal models of anxiety. In Willner, P. (ed.), Behavioural Models in Psychopharmacology, Cambridge University Press, Cambridge, UK, pp. 21–49.

    Google Scholar 

  • Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: More than 30 years of research. Pharmacol. Therap. 65:319–395.

    Google Scholar 

  • Griebel, G., Simiand, J., Serradeil-LeGal, C., Wagnon, J., Pascal, M., Scatton, B., Maffrand, J.-P., and Soubrie, P. (2002). Anxiolyticand antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR 149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl. Acad. Sci. USA 99:6370–6375.

    PubMed  Google Scholar 

  • Henniger, M. S. H., Ohl, F., Hölter, S. M., Weißenbacher, P., Toschi, N., Lörscher, P., Wigger, A., Spanagel, R., and Landgraf, R. (2000). Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behav. Brain Res. 111:153–163.

    PubMed  Google Scholar 

  • Henniger, M. S. H., Spanagel, R., Wigger, A., Landgraf, R., and Hölter, S. M. (2002). Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharmacology 26:729–736.

    PubMed  Google Scholar 

  • Hermann, B., Landgraf, R., Keck, M. E., Wigger, A., Morrow, A. L., Ströhle, A., Holsboer, F., and Rupprecht, R. (2000). Pharmacological characterisation of cortical g-aminobutyric acid type A (GABAA) receptors in two Wistar rat lines selectively bred for high and low anxiety-related behaviour. World J. Biol. Psychiatry 1:137–143.

    PubMed  Google Scholar 

  • Hess, J., Lesser, D., and Landgraf, R. (1992). Vasopressin and oxytocin in brain areas of rats selectively bred for differences in behavioral performance. Brain Res. 569:106–111.

    PubMed  Google Scholar 

  • Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54:21–30.

    PubMed  Google Scholar 

  • Keck, M. E., Welt, T., Post, A., Müller, M. B., Toschi, N., Wigger, A., Landgraf, R., Holsboer, F., and Engelmann, M. (2001a). Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24:337–349.

    PubMed  Google Scholar 

  • Keck, M. E., Welt, T., Wigger, A., Renner, U., Engelmann, M., Holsboer, F., and Landgraf, R. (2001b). The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on trait emotionality in rats. Eur. J. Neurosci. 13:373–380.

    PubMed  Google Scholar 

  • Keck, M. E., Welt, T., Müller, M. B., Uhr, M., Ohl, F., Wigger, A., Toschi, N., Holsboer, F., and Landgraf, R. (2002a). Downregulation of hypothalamic vasopressinergic hyperdrive is involved in clinically relevant behavioral and neuroendocrine antidepressant drug effects. Neuropsychopharmacology (in press).

  • Keck, M. E., Wigger, A., Welt, T., Müller, M. B., Gesing, A., Reul, J. H. M. H., Holsboer, F., Landgraf, R., and Neumann, I. D. (2002b). Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: Implications for pathogenesis of affective disorders. Neuropsychopharmacology 26:94–105.

    PubMed  Google Scholar 

  • Kendler, K. S. (1996). Major depression and generalised anxiety disorder: Same genes, (partly) different environments—revisited. Br. J. Psychiatry 168(Suppl. 30):68–75.

    PubMed  Google Scholar 

  • Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A., and Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23:925–935.

    PubMed  Google Scholar 

  • Lader, M. (1991). Animal models of anxiety: A clinical perspective. In Willner, P. (ed.), Behavioural Models in Psychopharmacology, Cambridge University Press, Cambridge, UK pp. 76–88.

    Google Scholar 

  • Lancel, M., Müller-Preuss, P., Wigger, A., Landgraf, R., and Holsboer, F. (2002). The CRH1 receptor antagonist R121919 attenuates stress-elicited sleep disturbances in rats, particularly in those with high trait anxiety. J. Psychiatr. Res. (in press)

  • Landgraf, R. (1995). Intracerebrally released vasopressin and oxytocin: Measurement, mechanism and behavioral consequences. J. Neuroendocrinol. 7:243–253.

    PubMed  Google Scholar 

  • Landgraf, R. (2001). Neuropeptides and anxiety-related behavior. Endocr. J. 48:517–533.

    PubMed  Google Scholar 

  • Landgraf, R., Gerstberger, R., Montkowsky, A., Probst, J. C., Wotjak, C. T., Holsboer, T., and Engelmann, M. (1995). V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxietyrelated behavior in rat. J. Neurosci. 15:4250–4258.

    PubMed  Google Scholar 

  • Landgraf, R., Wigger, A., Holsboer, F., and Neumann, I. D. (1999). Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behaviour. J. Neuroendocrinol. 11:405–407.

    PubMed  Google Scholar 

  • Liebsch, G., Landgraf, R., Gerstberger, R., Probst, J. C., Wotjak, C. T., Engelmann, M., Holsboer, F., and Montkowski, A. (1995). Chronic infusion of CRH1-receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Reg. Pept. 59:229–239.

    Google Scholar 

  • Liebsch, G., Wotjak, C. T., Landgraf, R., and Engelmann, M. (1996). Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci. Lett. 217:101–104.

    PubMed  Google Scholar 

  • Liebsch, G., Linthorst, A. C. E., Neumann, I. D., Reul, J. M. H. M., Holsboer, F., and Landgraf, R. (1998a). Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high-and low-anxiety-related behavior. Neuropsychopharmacology 19:381–396.

    PubMed  Google Scholar 

  • Liebsch, G., Montkowski, A., Holsboer, F., and Landgraf, R. (1998b). Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav. Brain Res. 94:301–310.

    PubMed  Google Scholar 

  • Liebsch, G., Landgraf, R., Engelmann, M., Lörscher, P., and Holsboer, F. (1999). Differential behavioural effects of chronic infusion of CRH1 and CRH2 receptor antisense oligonucleotides into the rat brain. J. Psychiatr. Res. 33:153–163.

    PubMed  Google Scholar 

  • Lucki, I. (1997). The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav. Pharmacol. 8:523–532.

    PubMed  Google Scholar 

  • McGaugh, J. L., Cahill, L., and Roosendaal, B. (1996). Involvement of the amygdala in memory storage: Interaction with other brain systems. Proc. Nat. Acad. Sci. USA 93:13508–13514.

    PubMed  Google Scholar 

  • Neumann, I. D., Wigger, A., Liebsch, G., Holsboer, F., and Landgraf, R. (1998). Increased basal activity of the hypothalamo-pituitaryadrenal axis during pregnancy in rats bred for high anxietyrelated behaviour. Psychoneuroendocrinology 23:449–463.

    PubMed  Google Scholar 

  • Nijsen, M. J. M. A., Croiset, G., Diamant, M., Stam, R., Delsing, D., de Wied, D., and Wiegant, V. M. (1998). Conditioned fearinduced tachycardia in the rat: Vagal involvement. Eur. J. Pharmacol. 350:211–222.

    PubMed  Google Scholar 

  • Ohl, F., Roedel, A., Storch, C., Holsboer, F., and Landgraf, R. (2002). Cognitive performance in rats differing in their inborn anxiety. Behav. Neurosci. 116:464–471.

    PubMed  Google Scholar 

  • Ohl, F., Toschi, N., Wigger, A., Henniger, M. S. H., and Landgraf, R. (2001). Dimensions of emotionality in a rat model of trait anxiety. Behav. Neurosci. 115:429–436.

    PubMed  Google Scholar 

  • Ohta, R., Matsumoto, A., Nagao, T., and Mizutani, M. (1998). Comparative study of behavioral development between high and low shuttlebox avoidance rats. Physiol. Behav. 63:545–551.

    PubMed  Google Scholar 

  • Opp, M. (1995). Corticotropin-releasing hormone involvement in stressor-induced alterations in sleep and in the regulation of waking. Adv. Neuroimmunol. 5:127–143.

    PubMed  Google Scholar 

  • Overstreet, D. H., Rezvani, A. H., and Janowski, D. S. (1992). Maudsley Reactive and Nonreactive rats differ only in some tasks reflecting emotionality. Physiol. Behav. 52:149–152.

    PubMed  Google Scholar 

  • Palanza, P. (2001). Animal models of anxiety and depression: How are females different? Neurosci. Biobehav. Rev. 25:219–233.

    PubMed  Google Scholar 

  • Paterson, A., Whiting, P. J., Gray, J. A., Flint, J., and Dawson, G. R. (2001). Lack of consistent behavioural effects of Maudsley Reactive and Non-reactive rats in a number of animal tests of anxiety and activity. Psychopharmacology 154:336–342.

    PubMed  Google Scholar 

  • Plomin, R. (1990). The role of inheritance in behavior. Science 248:183–188.

    PubMed  Google Scholar 

  • Ramos, A., Berton, O., Mormède, P., and Chaouloff, F. (1997). A multiple-test study of anxiety-related behaviors in six inbred rat strains. Behav. Brain Res. 85:57–69.

    PubMed  Google Scholar 

  • Rausch, J. L., Mac Hobby, H., Shendarkar, N., Johnson, M. E., and Li, J. (2001). Fluvoxamine treatment of mixed anxiety and depression: Evidence for serotonergically mediated anxiolysis. J. Clin. Psychopharmacol. 21:139–142.

    PubMed  Google Scholar 

  • Ressler, K. J., and Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiety 12(Suppl. 1):2–19.

    PubMed  Google Scholar 

  • Rodgers, R. J., Cao, B. J., Dalvi, A., and Holmes, A. (1997). Animal models of anxiety: An ethological perspective. Braz. J. Med. Biol. Res. 30:289–304.

    PubMed  Google Scholar 

  • Rogan, M. T., and LeDoux, J. E. (1996). Emotion: Systems, cells, synaptic plasticity. Cell 85:469–475.

    PubMed  Google Scholar 

  • Roozendaal, B., Wiersma, A., Driscoll, P., Koolhaas, J. M., and Bohus, B. (1992). Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat. Brain Res. 596:35–40.

    PubMed  Google Scholar 

  • Rowe, W. B., Spreekmeester, E., Meaney, M. J., Qiron, R., and Rochford, J. (1998). Reactivity to novelty in cognitively impaired and cognitively unimpaired aged and young rats. Neuroscience 83:669–680.

    PubMed  Google Scholar 

  • Ruis, M. A., te Brake, J. H., Buwalda, B., de Boer, S. F., Meerlo, P., Korte, S. M., Blokhuis, H. J., and Koolhaas, J. M. (1999). Housing familiar male wildtype rats together reduces the long-term adverse behavioural and physiological effects of social defeat. Psychoneuroendocrinology 24:285–300.

    PubMed  Google Scholar 

  • Salomé, N., Viltart, O., Darnaudéry, M., Salchner, P., Singewald, N., Landgraf, R., Sequeira, H., and Wigger A. (2002). Reliability of high and low anxiety-related behaviour: Influence of laboratory environment and multifactorial analysis. Behav. Brain Res. (in press).

  • Silva, R. H., and Frussa-Filho, R. (2000). The plus-maze discriminative avoidance task: A model to study memory-anxiety interactions—effects of chlordiazepoxide and caffeine. J. Neurosci. Meth. 102:117–125.

    Google Scholar 

  • Spanagel, R., Montkowski, A., Allingham, K., Stöhr, T., Shoaib, M., Holsboer, F., and Landgraf, R. (1995). Anxiety: A potential predictor of vulnerability to the initiation of ethanol self-administration in rats. Psychopharmacology 122:369–373.

    PubMed  Google Scholar 

  • Stahl, S. M. (1997). Mixed depression and anxiety: Serotonin 1A receptors as a common pharmacologic link. J. Clin. Psychiatry 58(Suppl. 8):20–26.

    Google Scholar 

  • Steimer, T., la Fleur, S., and Schulz, P. E. (1997). Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)-and low (RLA/Verh)-avoidance lines. Behav. Genet. 27:503–512.

    PubMed  Google Scholar 

  • Takahashi, L. K. (2001). Role of CRF1 and CRF2 receptors in fear and anxiety. Neurosci. Biobehav. Rev. 25:627–636.

    PubMed  Google Scholar 

  • Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J. M. H. M., Stalla, G. K., Blanquet, V., Steckler, T., Holsboer, F., and Wurst, W. (1998). Mice lacking a functional corticotropin-releasing hormone receptor 1 show impaired stress response and reduced anxiety under basal and alcohol withdrawal conditions. Nature Genet. 19:162–166.

    PubMed  Google Scholar 

  • Tornatzky, W., and Miczek, K. A. (1994). Behavioral and autonomic responses to intermittent social stress: Differential protection by clonidine and metoprolol. Psychopharmacology 116:346–356.

    PubMed  Google Scholar 

  • Umriukhin, A. E., Wigger, A., Singewald, N., and Landgraf, R. (2002). Hypothalamic and hippocampal release of serotonin in rats bred for hyper-or hypo-anxiety. Stress (in press).

  • Vallée, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H., and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. J. Neurosci. 17:2626–2636.

    PubMed  Google Scholar 

  • Wall, P. M., and Messier, C. (2001). Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci. Biobehav. Rev. 25:275–286.

    PubMed  Google Scholar 

  • Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci. Biobehav. Rev. 21:1–10.

    PubMed  Google Scholar 

  • Wigger, A., Loerscher, P., Weissenbacher, P., Holsboer, F., and Landgraf, R. (2001). Cross-fostering and cross-breeding of HAB and LAB rats: A genetic rat model of anxiety. Behav. Genet. 31:371–382.

    PubMed  Google Scholar 

  • Wigger, A., Sánchez, M. M., Mathys, K. C., Ebner, K., Liu, D., Kresse, A., Neumann, I. D., Holsboer, F., Plotsky, P. M., and Landgraf, R. (2002). Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: Critical role of vasopressin. Neuroscience (in press).

  • Wotjak, C. T., Ludwig, M., and Landgraf, R. (1994). Vasopressin facilitates its own release within the rat supraoptic nucleus in vivo. Neuroreport 5:1181–1184.

    PubMed  Google Scholar 

  • Zobel, A., Nickel, T., Künzel, H. E., Ackl, N., Sonntag, A., Ising, M., and Holsboer, F. (2000). Effects of the high-affinity corticotropinreleasing hormone receptor 1 antagonist R121919 in major depression: The first 20 patients. J. Psychiatr. Res. 34:171–181.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Landgraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landgraf, R., Wigger, A. High vs Low Anxiety-Related Behavior Rats: An Animal Model of Extremes in Trait Anxiety. Behav Genet 32, 301–314 (2002). https://doi.org/10.1023/A:1020258104318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020258104318

Navigation