Advertisement

Inflammation

, Volume 23, Issue 6, pp 569–581 | Cite as

Aminoguanidine Prevents Impaired Healing and Deficient Angiogenesis in Diabetic Rats

  • A. S. Teixeira
  • M. V. Caliari
  • O. A. Rocha
  • R. D. P. Machado
  • S. P. Andrade
Article

Abstract

The diabetic organism is unable to produce normal amount of granulation tissue which results in delayed wound healing, a significant clinical problem. In the present study, the effect of oral administration of aminoguanidine (AG), in the diabetes-induced inhibition of angiogenesis and granulation tissue formation was tested. Subcutaneous implantation of sponge discs in nondiabetic rats induced a wound repair response as determined by the amount of hemoglobin (vascular index) and granulation tissue formation (morphometric analysis) of the implants. In the streptozotocin-induced diabetic rats the predominant response indicative of healing was inhibitory. Aminoguanidine was effective in preventing in 50% the diabetes-induced inhibition of fibrovascular tissue growth in the implants, as indicated by the values of hemoglobin content and vascular growth areas of the implants. These results indicate that AG holds potential therapeutic value in the management of healing impairment of the diabetic condition.

Keywords

Wound Repair Aminoguanidine Healing Impairment Granulation Tissue Formation Hemoglobin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Lash, J. M., W. M. Sherman, and R. L. Hamlin. 1989. Capillary basement membrane thickness and capillary density in sedentary and trained obese Zucker rats. Diabetes 38:854-860.Google Scholar
  2. 2.
    Ruderman, N. B., J. R. Williamson, and M. Brownlee. 1992. Glucose and diabetic and diabetic vascular disease. FASEB J. 6:2905-2914.Google Scholar
  3. 3.
    Vlassara, H. 1994. Recent progress on the biologic and clinical significance of advanced glycosylation end products. J. Lab. Clin. Med. 124:19-30.Google Scholar
  4. 4.
    Odetti, P., N. Traverso, L. Cosso, G. Noberasco, M. A. Pronzato, and U. Marinari. 1996. Good glycaemic control reduces oxidation and glycation end-products in collagen of diabetic rats. Diabetologia 39:1440-1447.Google Scholar
  5. 5.
    Tilton, R. G., G. Pugliese, D. M. Eades, M. A. Province, W. R. Sherman, C. Kilo, and J. R. Williamson. 1989. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 37:1258-1270.Google Scholar
  6. 6.
    Lee, T-S., K. A. Saltsman, H. Ohashi, and G. L. King. 1989. Activation of protein kinase C by elevated glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. U.S.A. 86:5141-5145.Google Scholar
  7. 7.
    Brownlee, M., A. Cerami, and H. Vlassara. 1988. Advanced glycosylation end-products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318:1315-1321.Google Scholar
  8. 8.
    Giardino, I., D. Edelstein, and M. Brownlee. 1994. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. J. Clin. Invest. 94:110-117.Google Scholar
  9. 9.
    Hartoglou, C. S., E. C. Tsilibary, M. Brownlee, and A. S. Charonis. 1992. Altered cellular interactions between endothelial cells and non-enzymatically glycosylated laminin/type IV collagen. J. Biol. Chem. 267:12404-12407.Google Scholar
  10. 10.
    Sharma, C., E. R. Dalfers, B. Radhakrishnamurthy, E. L. Rosen, and G. S. Berengi. 1986. Nonenzymatic glycosylation of proteins and protease activity in granulation tissue in experimental diabetes. Inflammation 10:403-411.Google Scholar
  11. 11.
    Hammes, H. P., M. S. Federlin, K. Geisen, and M. Brownlee. 1991. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. U.S.A. 88:11555-11558.Google Scholar
  12. 12.
    Soulis-Liparota, T., M. Cooper, D. Papazoglou, B. Clarke, and G. Jerums. 1991. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. Diabetes 40:1328-1334.Google Scholar
  13. 13.
    Corman, B., M. Duriez, P. Poitevin, D. Heudes, P. Bruneval, A. Tedgui, and B. I. Levy. 1998. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 95:1301-1306.Google Scholar
  14. 14.
    Sannomiya, P., M. A. Oliveira, and Z. B. Fortes. 1997. Aminoguanidine and the prevention of leucocyte dysfunction in diabetes mellitus: a direct vital microscopic study. Br. J. Pharmacol. 122:894-898.Google Scholar
  15. 15.
    Teixeira, A. S., and S. P. Andrade. 1999. Glucose-induced inhibition of angiogenesis in the rat sponge granuloma is prevented by aminoguanidine. Life Sci. 64:655-664.Google Scholar
  16. 16.
    Andrade, S. P., T. P-D. Fan, and G. P. Lewis. 1987. Quantitative in vivo studies on angiogenesis in a rat sponge model. Br. J. Exp. Pathol. 68:755-766.Google Scholar
  17. 17.
    Hu, D.-E., C. R. Hiley, R. L. Smither, G. A. Gresham, and T-P. D. Fan. 1995. Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Lab. Invest. 72:601-610.Google Scholar
  18. 18.
    Kilo, C., N. Vogler, and J. R. Williamson. 1972. Muscle capillary basement membrane changes related to aging and to diabetes mellitus. Diabetes 21:881-905.Google Scholar
  19. 19.
    Rosen, R. G., and I. F. Enquist. 1961. The healing wound in experimental diabetes. Surgery 50:525-528.Google Scholar
  20. 20.
    Goodson, W. H., III, and T. K. Hunt. 1979. Deficient collagen formation by obese mice in a standard wound model. Am. J. Surg. 138:692-694.Google Scholar
  21. 21.
    Brown, R. L., M. P. Breeden, and D. G. Greenhalgh. 1994. PDGF and TGF-α act synergistically to improve wound healing in the genetically diabetic mouse. J. Surg. Res. 56:562-570.Google Scholar
  22. 22.
    Lorenzi, M., D. F. Montisano, S. Toledo, and A. Barrieux. 1986. High glucose induces DNA damage in cultured human endothelial cells. J. Clin. Invest. 77:322-325.Google Scholar
  23. 23.
    Graier, W. F., I. Grubenthal, P. Dittrich, T. C. Wascher, and G. Kostner. 1995. Intracellular mechanism of high D-glucose modulation of vascular cell proliferation. Eur. J. Pharmacol. 294:221-229.Google Scholar
  24. 24.
    Atherton, A., D. W. Hill, H. Keen, S. Young, and E. J. Edwards. 1980. The effect of acute hyperglycaemia on the retinal circulation of normal cat. Diabetologia 18:233-237.Google Scholar
  25. 25.
    Christiansen, S. J., M. Frandsen, and H.-H. Parving. 1981. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetes. Diabetologia 21:368-373.Google Scholar
  26. 26.
    Sessa, A., and A. Perin. 1994. Diamine oxidase in relation to diamine and polyamine metabolism. Agents and Actions 43:69-77.Google Scholar
  27. 27.
    Cobertt, J. A., R. G. Tilton, K. Chang, H. S. Khalid, Y. Ido, J. L. Wang, M. A. Sweetland, J. R. Lancaster, J. R. Williamson, and M. L. M C DANIEL. 1992. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552-556.Google Scholar
  28. 28.
    Kumari, K., S. Umar, V. Bansal, and M. K. Sahib. 1991. Inhibition of diabetes-associated complications by nucleophylic compounds. Diabetes 40:1079-1084.Google Scholar
  29. 29.
    Tilton, R. G., K. Chang, K. S. Hasan, S. R. Smith, J. M. Petrash, T. P. Misko, M. G. Moore, M. G. Currie, J. A. Corbett, M. L. McDaniel, and J. R. Williamson. 1993. Prevention of diabetic vascular dysfunction by guanidine; inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 42:221-232.Google Scholar
  30. 30.
    Schaffer, M. R., U. Tantry, P. A. Efron, G. M. Ahrendt, F. J. Thornton, and A. Barbul. 1997. Diabetes-impaired healing and reduced wound nitric oxide synthesis: A possible pathophysiologic correlation. Surgery 121:513-519.Google Scholar
  31. 31.
    Sakkoula, E., E. Pipili-Synetos, and M. Maragoudakis. 1997. Involvement of nitric oxide in the inhibition of angiogenesis by interleukin-2. Br. J. Pharmacol. 122:793-795.Google Scholar
  32. 32.
    Hennessey, P. J., C. T. Black, E. G. Ford, and J. R. Andrassy. 1990. Wound collagenase activity correlates directly with wound protein glycosylation in diabetic rats. J. Pediatr. Surg. 25:75-78.Google Scholar
  33. 33.
    Kuzuya, M., S. Satake, S. Ai, T. Asai, S. Kanda, M. A. Ramos, H. Miura, M. Ueda, and A. Igushi. 1998. Inhibition of angiogenesis on glycated collagen lattices. Diabetologia 41:491-499.Google Scholar
  34. 34.
    Wahl, S. M., D. A. Hunt, L. M. Wakefield, N. McCartney-Francis, L. M. Wahl, A. B. Roberts, and M. B. Sporn. 1987. Transforming growth factor beta induces monocyte chemotaxis and growth factor production. Proc. Natl. Acad. Sci. U.S.A. 84:5788-5792.Google Scholar
  35. 35.
    Adelmann-Grill, B. C., F. Wach, Z. Cully, R. Hein, and T. Krieg. 1990. Chemotactic migration of normal dermal fibroblasts towards epidermal growth factor and its modulation by platelet-derived growth factor and transforming growth factor-beta. Eur. J. Cell Biol. 51:322-325.Google Scholar
  36. 36.
    Roberts, A. B., M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern, and M. B. Sporn. 1985. Type β transforming growth factor: A biofunctional regulator cellular growth. Proc. Natl. Acad. Sci. U.S.A. 82:119-123.Google Scholar
  37. 37.
    Pierce, G. F., J. V. Berg, R. Randolph, J. Tarpley, and T. A. Mustoe. 1991. Platelet-derived growth factor-BB and transforming growth factor beta-1 selectively modulate glycosaminoglycan, collagen, and myofibroblasts in excisional wounds. Am. J. Pathol. 138:629-635.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • A. S. Teixeira
    • 1
  • M. V. Caliari
    • 2
  • O. A. Rocha
    • 2
  • R. D. P. Machado
    • 1
  • S. P. Andrade
    • 1
  1. 1.Department of Physiology and Biophysics, Institute of Biological SciencesFederal University of Minas GeraisCampus Pampulha Belo Horizonte/MGBrazil
  2. 2.Department of General Pathology, Institute of Biological SciencesFederal University of Minas GeraisCampus Pampulha Belo Horizonte/MGBrazil

Personalised recommendations