Letters in Mathematical Physics

, Volume 61, Issue 1, pp 41–50 | Cite as

Some Quantum-like Hopf Algebras which Remain Noncommutative when q = 1

  • Suemi Rodríguez-Romo
  • Earl Taft
Article

Abstract

Starting with only three of the six relations defining the standard (Manin) GL q (2), we try to construct a quantum group. The antipode condition requires some new relations, but the process stops at a Hopf algebra with a Birkhoff–Witt basis of irreducible monomials. The quantum determinant is group-like but not central, even when q = 1. So, the two Hopf algebras constructed in this way are not isomorphic to the Manin GL q (2), all of whose group-like elements are central. Analogous constructions can be made starting with the Dipper–Donkin version of GL q (2), but these turn out to be included in the two classes of Hopf algebras described above.

Hopf algebras quantum groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergman, G. M.: The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.Google Scholar
  2. 2.
    Dipper, R. and Donkin, S.: Quantum GL n . Proc. London Math. Soc. (3) 63 (1991), 165-211.Google Scholar
  3. 3.
    Enriquez, B. and Rubtsov, V. N.: Quantum groups in higher genus and Drinfeld's new realizations method (sl(2)case), Ann. Sci. École Norm. Sup. 30 (1997), 821-846.Google Scholar
  4. 4.
    Enriquez, B. and Felder, G.: Elliptic quantum groups E-tau, E-eta (sl(2)) and quasi-Hopf algebras, Comm. Math. Phys. 195 (1998), 651-689.Google Scholar
  5. 5.
    Etingof, P. and Schiffmann, O.: Lectures on Quantum Groups, Lectures in Mathematical Physics, International Press, Boston MA, 1998.Google Scholar
  6. 6.
    Fronsdal, C.: Glllq (n) and quantum monodromy, Lett. Math. Phys. 24 (1992), 73-78.Google Scholar
  7. 7.
    Fronsdal, C.: Generalization and exact deformations of quantum groups, Publ. RIMS Kyoto Univ. 33 (1997), 91-149.Google Scholar
  8. 8.
    Fronsdal, C. and Galindo, A.: Deformations of multiparameter quantum gl(n), Lett. Math. Phys. 34 (1995), 25-36.Google Scholar
  9. 9.
    Green, J. A., Nichols, W. D. and Taft, E. J.: Left Hopf algebras, J. Algebra 65 (1980), 399-411.Google Scholar
  10. 10.
    Hayashi, T.: Quantum deformation of classical groups, Publ. RIMS Kyoto Univ. 28 (1992), 57-81.Google Scholar
  11. 11.
    Hayashi, T.: Quantum groups and quantum semigroups, J. Algebra 204 (1998), 225-254.Google Scholar
  12. 12.
    Manin, Y. I.: Some remarks on Kozul algebras and quantum groups, Ann. Inst. Fourier, Grenoble 37 (1987), 1-15.Google Scholar
  13. 13.
    Manin, Y. I.: Quantum Groups and Non-commutative Geometry, CRM Univ. de Montréal, 1988.Google Scholar
  14. 14.
    Parshall, B. and Wang, J.-P.: Quantum linear groups, Mem. Amer. Math. Soc.89(439) (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Suemi Rodríguez-Romo
    • 1
  • Earl Taft
    • 2
  1. 1.Centro de Investigaciones TeóricasUniversidad Nacional Autónoma de México, Campus Cuautitlán, ApdoCuautitlán Izcalli, Edo. de MéxicoMéxico
  2. 2.Department of Mathematics, RutgersThe State University of New JerseyPiscatawayU.S.A.

Personalised recommendations