Advertisement

Neurochemical Research

, Volume 27, Issue 7–8, pp 619–627 | Cite as

Lysophospholipid Receptors in the Nervous System

  • Rachelle E. Toman
  • Sarah Spiegel
Article

Abstract

The lysophospholipid mediators, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), are responsible for cell signaling in diverse pathways including survival, proliferation, motility, and differentiation. Most of this signaling occurs through an eight-member family of G-protein coupled receptors once known as the endothelial differentiation gene (EDG) family. More recently, the EDG receptors have been divided into two subfamilies: the lysophosphatidic acid subfamily, which includes LPA1, (EDG-2/VZG-1), LPA2 (EDG-4), and LPA3 (EDG-7), and the sphingosine-1-phosphate receptor subfamily, which includes S1P1 (EDG-1), S1P2 (EDG-5/H218/AGR16), S1P3 (EDG-3), S1P4 (EDG-6), and S1P5 (EDG-8/NRG-1). The ubiquitous expression of these receptors across species, coupled with their diverse cellular functions, has made lysophospholipid receptors an important focus of signal transduction research. Neuroscientists have recently begun to explore the role of lysophospholipid receptors in a number of cell types; this research has implicated these receptors in the survival, migration, and differentiation of cells in the mammalian nervous system.

G-protein-coupled receptor lysophosphatidic acid nervous system sphingosine-1-phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Goetzl, E. J. and An, S. 1998. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12:1589-1598.Google Scholar
  2. 2.
    Chun, J., Contos, J. J., and Munroe, D. 1999. A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs). Cell Biochem. Biophys. 30:213-242.Google Scholar
  3. 3.
    Moolenaar, W. H. 1999. Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell Res. 253:230-238.Google Scholar
  4. 4.
    Goetzl, E. J., Lee, H., Dolezalova, H., Kalli, K. R., Conover, C. A., Hu, Y. L., Azuma, T., Stossel, T. P., Karliner, J. S., and Jaffe, R. B. 2000. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann. N.Y. Acad. Sci. 905:177-187.Google Scholar
  5. 5.
    Pyne, S., Pyne, N. J. 2000. Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349:385-402.Google Scholar
  6. 6.
    Spiegel, S. and Milstien, S. 2000. Functions of a new family of sphingosine-1-phosphate receptors. Biochim. Biophys. Acta. 1484:107-116.Google Scholar
  7. 7.
    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H., and Kluk, M. J. 2001. Lysophospholipids-receptor revelations. Science. 294:1875-1878.Google Scholar
  8. 8.
    Postma, F. R., Jalink, K., and Hengeveld, T., Moolenaar, W. H. 1996. Sphingosine-1-phosphate rapidly induces rho-dependent neurite retraction: Action through a specific cell surface receptor. EMBO J. 15:2388-2392.Google Scholar
  9. 9.
    Sato, K., Tomura, H., Igarashi, Y., Ui, M., and Okajima, F. 1997. Exogenous sphingosine 1-phosphate induces neurite retraction possibly through a cell surface receptor in PC12 cells. Biochem. Biophys. Res. Commun. 240:329-334.Google Scholar
  10. 10.
    Spiegel, S. and Merrill, A. H., Jr. 1996. Sphingolipid metabolism and cell growth regulation. FASEB J. 10:1388-1397.Google Scholar
  11. 11.
    Hannun, Y. A., Luberto, C., and Argraves, K. M. 2001. Enzymes of sphingolipid metabolism: From modular to integrative signaling. Biochemistry 40:4893-4903.Google Scholar
  12. 12.
    Eichholtz, T., Jalink, K., Fahrenfort, I., and Moolenaar, W. H. 1993. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J. 291:677-680.Google Scholar
  13. 13.
    Pages, C., Simon, M. F., Valet, P., and Saulnier-Blache, J. S. 2001. Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 64:1-10.Google Scholar
  14. 14.
    Fourcade, O., Simon, M. F., Viode, C., Rugani, N., Leballe, F., Ragab, A., Fournie, B., Sarda, L., and Chap, H. 1995. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80:919-927.Google Scholar
  15. 15.
    Gaits, F., Fourcade, O., Le Balle, F., Gueguen, G., Gaige, B., Gassama-Diagne, A., Fauvel, J., Salles, J. P., Mauco, G., Simon, M. F., and Chap, H. 1997. Lysophosphatidic acid as a phospholipid mediator: Pathways of synthesis. FEBS Lett. 410:54-58.Google Scholar
  16. 16.
    Tokumura, A., Okuno, M., Fukuzawa, K., Houchi, H., Tsuchiya, K., and Oka, M. 1998. Positive and negative controls by protein kinases of sodium-dependent Ca2+efflux from cultured bovine adrenal chromaffin cells stimulated by lysophosphatidic acid. Biochim. Biophys. Acta. 1389:67-75.Google Scholar
  17. 17.
    Yatomi, Y., Ohmori, T., Rile, G., Kazama, F., Okamoto, H., Sano, T., Satoh, K., Kume, S., Tigyi, G., Igarashi, Y., and Ozaki, Y. 2000. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 96:3431-3438.Google Scholar
  18. 18.
    Olivera, A. and Spiegel, S. 1993. Sphingosine-1-phosphate as a second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557-560.Google Scholar
  19. 19.
    Edsall, L. C., Pirianov, G. G., and Spiegel, S. 1997. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci. 17:6952-6960.Google Scholar
  20. 20.
    Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K. T., Neumann, E., Zhang, C., Schmidt, M., Rauen, U., Jakobs, K. H., and van Koppen, C. J. 1998. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 17:2830-2837.Google Scholar
  21. 21.
    Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S. T., Cockerill, P., Khew-Goodall, Y., Bert, A. G., Barter, P. J., and Vadas, M. A. 1998. Tumor necrosis factor-a induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl. Acad. Sci. U.S.A. 95:14196-14201.Google Scholar
  22. 22.
    Nikolova-Karakashian, M., Morgan, E. T., Alexander, C., Liotta, D. C., and Merrill, A. H., Jr. 1997. Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11. J. Biol. Chem. 272:18718-18724.Google Scholar
  23. 23.
    Choi, O., H., Kim, J.-H., and Kinet, J.-P. 1996. Calcium mobilization via sphingosine kinase in signalling by the FcɛRI antigen receptor. Nature 380:634-636.Google Scholar
  24. 24.
    Melendez, A., Floto, R. A., Gillooly, D. J., Harnett, M. M., and Allen, J. M. 1998. FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J. Biol. Chem. 273:9393-9402.Google Scholar
  25. 25.
    Mandala, S. M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., Bergstrom, J., Kurtz, M. B., and Spiegel, S. 2000. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc. Natl. Acad. Sci. U.S.A. 97:7859-7864.Google Scholar
  26. 26.
    Le Stunff, H., Peterson, C., Thornton, R., Milstien, S., Mandala, S. M., and Spiegel, S. 2002. Characterization of Murine Sphingosine-1-phosphate Phosphohydrolase. J. Biol. Chem. 277:8920-8927.Google Scholar
  27. 27.
    Van Veldhoven, P. P., Gijsbers, S., Mannaerts, G. P., Vermeesch, J. R., and Brys, V. 2000. Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochim. Biophys. Acta. 487:128-134.Google Scholar
  28. 28.
    Hecht, J. H., Weiner, J. A., Post, S. R., and Chun, J. 1996. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135:1071-1083.Google Scholar
  29. 29.
    Contos, J. J. and Chun, J. 1998. Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, 1pA1/vzg-1/Gpcr26. Genomics 51:364-378.Google Scholar
  30. 30.
    Weiner, J. A., Hecht, J. H., and Chun, J. 1998. Lysophosphatidic acid receptor gene vzg-1/1pA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J. Comp. Neurol. 398:587-598.Google Scholar
  31. 31.
    Fukushima, N., Kimura, Y., and Chun, J. 1998. A single receptor encoded by vzg-1/1pA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A. 95:6151-6156.Google Scholar
  32. 32.
    Fukushima, N., Weiner, J. A., and Chun, J. 2000. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol. 228:6-18.Google Scholar
  33. 33.
    Dubin, A. E., Bahnson, T., Weiner, J. A., Fukushima, N., and Chun, J. 1999. Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and Lglutamate in early, presumptive cortical neuroblasts. J. Neurosci. 19:1371-1381.Google Scholar
  34. 34.
    LoTurco, J. J., Owens, D. F., Health, M. J., Davis, M. B., and Kriegstein, A. R. 1995. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287-1298.Google Scholar
  35. 35.
    Weiner, J. A. and Chun, J. 1999. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A. 96:5233-5238.Google Scholar
  36. 36.
    An, S., Bleu, T., Hallmark, O. G., and Goetzl, E. J. 1998. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273:7906-7910.Google Scholar
  37. 37.
    Yoshida, A. and Ueda, H. 1999. Activation of Gi1 by lysophosphatidic acid receptor without ligand in the baculovirus expression system. Biochem. Biophys. Res. Commun. 259:78-84.Google Scholar
  38. 38.
    Contos, J. J., Fukushima, N., Weiner, J. A., Kaushal, D., and Chun, J. 2000. Requirement for the 1pA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. U.S.A. 97:13384-13389.Google Scholar
  39. 39.
    Fukushima, N. and Chun, J. 2001. The LPA receptors. Prostaglandins Other Lipid Mediat. 64:21-32.Google Scholar
  40. 40.
    Contos, J. J., Ishii, I., and Chun, J. 2000. Lysophosphatidic acid receptors. Mol. Pharmacol. 58:1188-1196.Google Scholar
  41. 41.
    Ishii, I., Contos, J. J., Fukushima, N., and Chun, J. 2000. Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol. 58:895-902.Google Scholar
  42. 42.
    Bandoh, K., Aoki, J., Hosono, H., Kobayashi, S., Kobayashi, T., Murakami-Murofushi, K., Tsujimoto, M., Arai, H., and Inoue, K. 1999. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem. 274:27776-27785.Google Scholar
  43. 43.
    Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., Heavens, R. P., Rigby, M. R., Hla, T., Mandala, S., McAllister, G., George, S. R., and Lynch, K. R. 2000. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J. Biol. Chem. 275:14281-14286.Google Scholar
  44. 44.
    Hla, T. and Maciag, T. 1990. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein coupled receptors. J. Biol. Chem. 265:9308-9313.Google Scholar
  45. 45.
    Lado, D. C., Browe, C. S., Gaskin, A. A., Borden, J. M., and MacLennan, A. J. 1994. Cloning of the rat edg-1 immediateearly gene: Expression pattern suggests diverse functions. Gene 149:331-336.Google Scholar
  46. 46.
    Sato, K., Ui, M., and Okajima, F. 2000. Differential roles of Edg-1 and Edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in C6 glioma cells. Brain Res. Mol. Brain. Res. 85:151-160.Google Scholar
  47. 47.
    Liu, C. H. and Hla, T. 1997. The mouse gene for the inducible G-protein-coupled receptor edg-1. Genomics 43:15-24.Google Scholar
  48. 48.
    Im, D. S., Ungar, A. R., Lynch, K. R. 2000. Characterization of a zebrafish (Danio rerio) sphingosine 1-phosphate receptor expressed in the embryonic brain. Biochem. Biophys. Res. Commun. 279:139-143.Google Scholar
  49. 49.
    Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., Yatomi, Y., Shigematsu, H., and Takuwa, Y. 1998. EDG1 is a functional sphingosine-1-phosphate receptor that Is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273:27104-27110.Google Scholar
  50. 50.
    Van Brocklyn, J. R., Lee, M. J., Menzeleev, R., Olivera, A., Edsall, L., Cuvillier, O., Thomas, D. M., Coopman, P. J. P., Thangada, S., Hla, T., and Spiegel, S. 1998. Dual actions of sphingosine-1-phosphate: Extracellular through the Gi-coupled orphan receptor edg-1 and intracellular to regulate proliferation and survival. J. Cell Biol. 142:229-240.Google Scholar
  51. 51.
    Zondag, G. C. M., Postma, F. R., Etten, I. V., Verlaan, I., and Moolenaar, W. H. 1998. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem. J. 330:605-609.Google Scholar
  52. 52.
    Wu, J., Spiegel, S., and Sturgill, T. W. 1995. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J. Biol. Chem. 270:11484-11488.Google Scholar
  53. 53.
    Lee, M.-J., Evans, M., and Hla, T. 1996. The inducible G protein-coupled receptor edg-1 signals via the Gi/mitogen-activated protein kinase pathway. J. Biol. Chem. 271:11272-11282.Google Scholar
  54. 54.
    Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S., and Hla, T. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552-1555.Google Scholar
  55. 55.
    Stam, J. C., Michiels, F., Kammen, R. A., Moolenaar, W. H., and Collard, J. G. 1998. Invasion of T-lymphoma cells: Cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 17:4066-4074.Google Scholar
  56. 56.
    Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., Rosenfeldt, H. M., Nava, V. E., Chae, S. S., Lee, M. J., Liu, C. H., Hla, T., Spiegel, S., and Proia, R. L. 2000. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106:951-961.Google Scholar
  57. 57.
    Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C. 1997. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 277:242-245.Google Scholar
  58. 58.
    Hellstrom, M., Kaln, M., Lindahl, P., Abramsson, A., and Betsholtz, C. 1999. Role of PDGF-b and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047-3055.Google Scholar
  59. 59.
    Rosenfeldt, H. M., Hobson, J. P., Maceyka, M., Olivera, A., Nava, V. E., Milstien, S., and Spiegel, S. 2001. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J. 15:2649-2659.Google Scholar
  60. 60.
    Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., Milstien, S., and Spiegel, S. 2001. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800-1803.Google Scholar
  61. 61.
    Alderton, F., Rakhit, S., Choi, K. K., Palmer, T., Sambi, B., Pyne, S., and Pyne, N. J. 2001. Tethering of the platelet-derived growth factor beta receptor to G-protein coupled receptors: A novel platform for integrative signaling by these receptor classes in mammalian cells. J. Biol. Chem. 276:12452-13460.Google Scholar
  62. 62.
    Zhang, G., Contos, J. J., Weiner, J. A., Fukushima, N., and Chun, J. 1999. Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene 227:89-99.Google Scholar
  63. 63.
    Van Brocklyn, J. R., Tu, Z., Edsall, L. C., Schmidt, R. R., and Spiegel, S. 1999. Sphingosine 1-phosphate-induced cell rounding and neurite retraction are mediated by the G protein-coupled receptor H218. J. Biol. Chem. 274:4626-4632.Google Scholar
  64. 64.
    An, S., Zheng, Y., and Bleu, T. 2000. Sphingosine 1-phosphateinduced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275:288-296.Google Scholar
  65. 65.
    An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughling, S. R., and Goetzl, E. J. 1997. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 417:279-282.Google Scholar
  66. 66.
    An, S., Bleu, T., and Zheng, Y. 1999. Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol. Pharmacol. 55:787-794.Google Scholar
  67. 67.
    Ancellin, N. and Hla, T. 1999. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274:18997-19002.Google Scholar
  68. 68.
    Gonda, K., Okamoto, H., Takuwa, N., Yatomi, Y., Okazaki, H., Sakurai, T., Kimura, S., Sillard, R., Harii, K., and Takuwa, Y. 1999. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and-insensitive G-proteins to multiple signalling pathways. Biochem. J. 337:67-75.Google Scholar
  69. 69.
    Katoh, H., Aoki, J., Yamaguchi, Y., Kitano, Y., Ichikawa, A., and Negishi, M. 1998. Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem. 273:28700-28707.Google Scholar
  70. 70.
    Kon, J., Sato, K., Watanabe, T., Tomura, H., Kuwabara, A., Kimura, T., Tamama, K., Ishizuka, T., Murata, N., Kanda, T., Kobayashi, I., Ohta, H., Ui, M., and Okajima, F. 1999. Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J. Biol. Chem. 274:23940-23947.Google Scholar
  71. 71.
    MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., Anderson, K. J., Roper, S. N., and Lee, N. 2001. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur. J. Neurosci. 14:203-209.Google Scholar
  72. 72.
    MacLennan, A. J., Marks, L., Gaskin, A. A., and Lee, N. 1997. Embryonic expression pattern of H218, a G-protein coupled receptor homolog, suggests roles in early mammalian nervous system development. Neuroscience. 79:217-224.Google Scholar
  73. 73.
    MacLennan, A. J., Devlin, B. K., Marks, L., Gaskin, A. A., Neitzel, K. L., and Lee, N. 2000. Antisense studies in PC12 cells suggest a role for H218, a sphingosine 1-phosphate receptor, in growth-factor-induced cell-cell interaction and neurite outgrowth. Dev. Neurosci. 22:283-295.Google Scholar
  74. 74.
    Glickman, M., Malek, R. L., Kwitek-Black, A. E., Jacob, H. J., and Lee, N. H. 1999. Molecular cloning, tissue-specific expression, and chromosomal localization of a novel nerve growth factor-regulated G-protein-coupled receptor, nrg-1. Mol. Cell. Neurosci. 14:141-152.Google Scholar
  75. 75.
    MacLennan, A. J., Browe, C. S., Gaskin, A. A., Lado, D. C., and Shaw, G. 1994. Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol. Cell Neurosci. 5:201-209.Google Scholar
  76. 76.
    Im, D. S., Clemens, J., Macdonald, T. L., and Lynch, K. R. 2001. Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P(5) (Edg-8): Structure-activity relationship of sphingosine1-phosphate receptors. Biochemistry. 40:14053-14060.Google Scholar
  77. 77.
    Heasley, L. E. and Johnson, G. L. 1992. The beta-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol Cell. 3:545-553.Google Scholar
  78. 78.
    Yao, H., York, R. D., Misra-Press, A., Carr, D. W., and Stork, P. J. 1998. The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for the sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. J. Biol. Chem. 273:8240-8247.Google Scholar
  79. 79.
    Malek, R. L., Toman, R. E., Edsall, L. C., Wong, S., Chiu, J., Letterle, C. A., Van Brocklyn, J. R., Milstien, S., Spiegel, S., and Lee, N. H. 2001. Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. J. Biol. Chem. 276:5692-5699.Google Scholar
  80. 80.
    Huang, X. C., Sumners, C., and Richards, E. M. 1996. Angiotensin II stimulates protein phosphatase 2A activity in cultured neuronal cells via type 2 receptors in a pertussis toxin sensitive fashion. Adv. Exp. Med. Biol. 396:209-215.Google Scholar
  81. 81.
    Bedecs, K., Elbaz, N., Sutren, M., Masson, M., Susini, C., Strosberg, A. D., and Nahmias, C. 1997. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem. J. 325:449-454.Google Scholar
  82. 82.
    Lu, Q., Sun, E. E., Klein, R. S., and Flanagan, J. G. 2001. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 105:69-79.Google Scholar
  83. 83.
    Allard, J., Barron, S., Diaz, J., Lubetzki, C., Zalc, B., Schwartz, J. C., and Sokoloff, P. 1998. A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Eur. J. Neurosci. 10:1045-1053.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Rachelle E. Toman
    • 1
    • 2
  • Sarah Spiegel
    • 2
  1. 1.Interdisciplinary Program in Neuroscience and Department of Biochemistry and Molecular BiologyGeorgetown University Medical CenterWashington
  2. 2.Department of Biochemistry, Medical College of Virginia CampusVirginia Commonwealth UniversityRichmond

Personalised recommendations