Journal of Biomolecular NMR

, Volume 23, Issue 4, pp 289–301 | Cite as

Side chain NMR assignments in the membrane protein OmpX reconstituted in DHPC micelles

  • Christian Hilty
  • César Fernández
  • Gerhard Wider
  • Kurt Wüthrich

Abstract

Sequence-specific assignments have been obtained for side chain methyl resonances of Val, Leu and Ile in the outer membrane protein X (OmpX) from Escherichia colireconstituted in 60 kDa micelles in aqueous solution. Using previously established techniques, OmpX was uniformly 2H,13C,15N-labeled with selectively protonated Val-γ1,2, Leu-δ1,2and Ile-δ1methyl groups. The thus labeled protein was studied with the novel experiments 3D (H)C(CC)-TOCSY-(CO)-[15N,1H]-TROSY and 3D H(C)(CC)-TOCSY-(CO)-[15N,1H]-TROSY. Compared to the corresponding conventional experimental schemes, the TROSY-type experiments yielded a sensitivity gain of about 2 at 500 MHz. The overall sensitivity of the experiments was further enhanced more than two-fold by the use of a cryoprobe. Complete assignments of the proton and carbon chemical shifts were obtained for all isopropyl methyl groups of Val and Leu, as well as for the δ1-methyls of Ile. The present approach is applicable for soluble proteins or micelle-reconstituted membrane proteins in structures with overall molecular weights up to about 100 kDa, and adds to the potentialities of solution NMR for de novostructure determination as well as for functional studies, such as ligand screening with proteins in large structures.

cryoprobe isotope labeling membrane proteins side chain assignment TROSY-NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, A., Abildgaard, F., Bushweller, J.H. and Tamm, L.K. (2001) Nat. Struct. Biol., 8, 334–338.Google Scholar
  2. Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Magn. Reson., 88, 425–431.Google Scholar
  3. Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185–189.Google Scholar
  4. Fernández, C., Adeishvili, K. and Wüthrich, K. (2001a) Proc. Natl. Acad. Sci. USA, 98, 2358–2363.Google Scholar
  5. Fernández, C., Hilty, C., Bonjour, S., Adeishvili, K., Pervushin, K. and Wüthrich, K. (2001b) FEBS Lett., 504, 173–178.Google Scholar
  6. Gardner, K.H. and Kay, L.E. (1998) Annu. Rev. Biophys. Biomol. Struct., 27, 357–406.Google Scholar
  7. Gardner, K.H., Konrat, R., Rosen, M.K. and Kay, L.E. (1996) J. Biomol. NMR, 8, 351–356.Google Scholar
  8. Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93–141.Google Scholar
  9. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. and Kay, L.E. (1999) J. Biomol. NMR, 13, 369–374.Google Scholar
  10. Grzesiek, S., Anglister, J. and Bax, A. (1993) J. Magn. Reson. B, 101, 114–119.Google Scholar
  11. Hochuli, M., Szyperski, T. and Wüthrich, K. (2000) J. Biomol. NMR, 17, 33–42.Google Scholar
  12. LeMaster, D.M. (1994) Prog. NMR Spectrosc., 26, 371–419.Google Scholar
  13. Lin, Y.X. and Wagner, G. (1999) J. Biomol. NMR, 15, 227–239.Google Scholar
  14. Logan, T.M, Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1993) J. Biomol. NMR, 3, 225–231.Google Scholar
  15. Loria, J.P., Rance, M. and Palmer, A.G. (1999) J. Magn. Reson., 141, 180–184.Google Scholar
  16. Lyons, B.A. and Montelione, G.T. (1993) J. Magn. Reson. B, 101, 206–209.Google Scholar
  17. Lyons, B.A., Tashiro, M., Cedergren, L., Nilsson, B. and Montelione, G.T. (1993) Biochemistry, 32, 7839–7845.Google Scholar
  18. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  19. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1–23.Google Scholar
  20. McCoy, M.A. and Mueller, L. (1992) J. Am. Chem. Soc., 114, 2108–2112.Google Scholar
  21. Montelione, G.T., Lyons, B.A., Emerson, S.D. and Tashiro, M. (1992) J. Am. Chem. Soc., 114, 10974–10975.Google Scholar
  22. Neri, D., Otting, G. and Wüthrich, K. (1990) Tetrahedron, 46, 3287–3296.Google Scholar
  23. Permi, P. and Annila, A. (2001) J. Biomol. NMR, 20, 127–133.Google Scholar
  24. Pervushin, K. (2000) Q. Rev. Biophys., 33, 161–197.Google Scholar
  25. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.Google Scholar
  26. Pervushin, K., Wider, G. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 345–348.Google Scholar
  27. Peti, W., Griesinger, C. and Bermel, W. (2000) J. Biomol. NMR, 18, 199–205.Google Scholar
  28. Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661–665.Google Scholar
  29. Riek, R., Pervushin, K. and Wüthrich, K. (2000) Trends Biochem. Sci., 25, 462–468.Google Scholar
  30. Rosen, M.K., Gardner, K.H., Willis, R.C., Parris, W.E., Pawson, T. and Kay, L.E. (1996) J. Mol. Biol., 263, 627–636.Google Scholar
  31. Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 13585–13590.Google Scholar
  32. Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wüthrich, K. (2000) J. Am. Chem. Soc., 122, 7543–7548.Google Scholar
  33. Salzmann, M., Wider, G., Pervushin, K. and Wüthrich, K. (1999) J. Biomol. NMR, 15, 181–184.Google Scholar
  34. Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.Google Scholar
  35. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  36. Wider, G. (1998) Prog. NMR Spectrosc., 32, 193–275.Google Scholar
  37. Wider, G. and Wüthrich, K. (1999) Curr. Opin. Struct. Biol., 9, 594–601.Google Scholar
  38. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  39. Wüthrich, K. (1998) Nat. Struct. Biol., 5, 492–495.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Christian Hilty
    • 1
  • César Fernández
    • 1
  • Gerhard Wider
    • 1
  • Kurt Wüthrich
    • 1
  1. 1.Eidgenössische Technische Hochschule ZürichInstitut für Molekularbiologie und BiophysikZürichSwitzerland

Personalised recommendations