Advertisement

Journal of Sol-Gel Science and Technology

, Volume 25, Issue 3, pp 183–189 | Cite as

Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method

  • Ki Do Kim
  • Hee Taik Kim
Article

Abstract

A new method for preparing silica nanoparticles, which consists of a two-stage semi-batch/batch hydrolysis reaction of tetraethylorthosilicate (TEOS), is presented. A relatively slow rate of hydrolysis of the TEOS occurred during the semi-batch process, which resulted in larger silica particles with a narrower size distribution. This was in direct contrast to the batch process. An example of reduction in particle size for an initial semi-batch and subsequent batch reaction is shown. On completion of the initial semi-batch step, the silica particles had a diameter of 106 nm. As the subsequent batch reaction proceeded, the mean size of the particles decreased to 23 nm. In this work, it was found that the optimal conditions for the silica nanoparticles using this mixed method were as follows; (TEOS: 0.5 M, H2O: 6.0 M, NH4OH: 0.2 M, feed rate: 5.0 ml/min, temperature: 42.5°C). In conclusion, a mixedsemi-batch/batch system suggested a new probability for the synthesis of nanoparticles.

silica TEOS semi-batch/batch hydrolysis optimal condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Overbeek, Adv. Colloid Interface Sci. 15, 251 (1982).Google Scholar
  2. 2.
    G.R. Wiese and T.W. Healy, Trans. Faraday Soc. 66, 490 (1970).Google Scholar
  3. 3.
    K. Unger, J. Chromatogr. 61, 359 (1986).Google Scholar
  4. 4.
    M.D. Sacks and T.Y. Tseng, J. Am. Ceram. Soc. 67, 526 (1984).Google Scholar
  5. 5.
    G. Kolbe, Das Komplexchemische Verhalten der Kieselsäure (Dissertation, Jena, 1956).Google Scholar
  6. 6.
    W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
  7. 7.
    V.A. Blaaderen, V.J. Geest, and A.J. Vrij, J. Colloid Interface Sci. 154, 481 (1992).Google Scholar
  8. 8.
    G.H. Bogush and C.F. Zukoski, J. Colloid Interface Sci. 142, 1 (1991).Google Scholar
  9. 9.
    T. Matsoukas and E. Gulari, J. Colloid Interface Sci. 132, 13 (1989).Google Scholar
  10. 10.
    H.S. Fogler, Elements of Chemical Reaction Engineering: Rate Laws and Stoichiometry (Prentice-Hall, Englewood Cliffs, NJ 1986), p. 59.Google Scholar
  11. 11.
    S.K. Park, K.D. Kim, and H.T. Kim, J. Ind. Eng. Chem. 6, 365 (2000).Google Scholar
  12. 12.
    T. Matsoukas and E. Gulari, J. Colloid Interface Sci. 124, 252 (1988).Google Scholar
  13. 13.
    K.D. Kim and H.T. Kim, J. Ind. Eng. Chem. 6, 281 (2000).Google Scholar
  14. 14.
    V.K. Lamer and R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ki Do Kim
    • 1
  • Hee Taik Kim
    • 1
  1. 1.Department of Chemical EngineeringHanyang UniversityAnsan Kyunggi-doSouth Korea

Personalised recommendations