Advertisement

Neurochemical Research

, Volume 27, Issue 7–8, pp 601–607 | Cite as

Ceramide in Apoptosis: A Revisited Role

  • Thierry Levade
  • Sophie Malagarie-Cazenave
  • Valérie Gouazé
  • Bruno Ségui
  • Claudine Tardy
  • Susan Betito
  • Nathalie Andrieu-Abadie
  • Olivier Cuvillier
Article

Abstract

The sphingolipid ceramide has recently emerged as a new transducer or modulator of apoptotic cell death. This function, however, has recently been challenged. Here, in the light of recent observations, the role of ceramide in apoptosis signaling is discussed.

Apoptosis ceramide FAN sphingomyelin sphingomyelinase sphingosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407:770-776.Google Scholar
  2. 2.
    Riboni, L., Viani, P., Bassi, R., Prinetti, A., and Tettamanti, G. 1997. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36:153-195.Google Scholar
  3. 3.
    Kolesnick, R. N. and Krönke, M. 1998. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60:643-665.Google Scholar
  4. 4.
    Hannun, Y. A. and Luberto, C. 2000. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10:73-80.Google Scholar
  5. 5.
    Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. 1993. Programmed cell death induced by ceramide. Science 259:1769-1771.Google Scholar
  6. 6.
    Hofmann, K. and Dixit, V. M. 1998. Ceramide in apoptosis: does it really matter? Trends Biochem. Sci. 23:374-377.Google Scholar
  7. 7.
    Kolesnick, R. and Hannun, Y. A. 1999. Ceramide and apoptosis. Trends Biochem. Sci. 24:224-225.Google Scholar
  8. 8.
    Hofmann, K. and Dixit, V. M. 1999. Reply to Kolesnick and Hannun, and Perry and Hannun. Trends Biochem. Sci. 24:227.Google Scholar
  9. 9.
    Radin, N. S. 2001. Killing cancer cells by poly-drug elevation of ceramide levels: a hypothesis whose time has come? Eur. J. Biochem. 268:193-204.Google Scholar
  10. 10.
    Hannun, Y. A., Luberto, C., and Argraves, K. M. 2001. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893-4903.Google Scholar
  11. 11.
    Levade, T., Augé, N., Veldman, R. J., Cuvillier, O., Nègre-Salvayre, A., and Salvayre, R. 2001. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ. Res. 89:957-968.Google Scholar
  12. 12.
    Mathias, S., Pena, L. A., and Kolesnick, R. N. 1998. Signal transduction of stress via ceramide. Biochem. J. 335:465-480.Google Scholar
  13. 13.
    Zhang, J., Alter, N., Reed, J. C., Borner, C., Obeid, L. M., and Hannun, Y. A. 1996. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc. Natl. Acad. Sci. U.S.A. 93:5325-5328.Google Scholar
  14. 14.
    Allouche, M., Bettaieb, A., Vindis, C., Rousse, A., Grignon, C., and Laurent, G. 1997. Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14:1837-1845.Google Scholar
  15. 15.
    Dbaibo, G. S., Perry, D. K., Gamard, C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. 1997. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-α: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J. Exp. Med. 185:481-490.Google Scholar
  16. 16.
    Wiesner, D. A., Kilkus, J. P., Gottschalk, A. R., Quintans, J., and Dawson, G. 1997. Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involve the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J. Biol. Chem. 272: 9868-9876.Google Scholar
  17. 17.
    Jaffrézou, J. P., Maestre, N., de Mas-Mansat, V., Bezombes, C., Levade, T., and Laurent, G. 1998. Positive feedback control of neutral sphingomyelinase activity by ceramide. FASEB J. 12: 999-1006.Google Scholar
  18. 18.
    Tepper, A. D., de Vries, E., van Blitterswijk, W. J., and Borst, J. 1999. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95-and DNA damageinduced apoptosis. J. Clin. Invest. 103:971-978.Google Scholar
  19. 19.
    Cuvillier, O., Edsall, L., and Spiegel, S. 2000. Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J. Biol. Chem. 275:15691-15700.Google Scholar
  20. 20.
    Ji, L., Zhang, G., Uematsu, S., Akahori, Y., and Hirabayashi, Y. 1995. Induction of apoptotic DNA fragmentation and cell death by natural ceramide. FEBS Lett. 358:211-214.Google Scholar
  21. 21.
    Sweeney, E. A., Sakakura, C., Shirahama, T., Masamune, A., Ohta, H., Hakomori, S., and Igarashi, Y. 1996. Sphingosine and its methylated derivative N,N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int. J. Cancer 66:358-366.Google Scholar
  22. 22.
    Bielawska, A., Crane, H. M., Liotta, D., Obeid, L. M., and Hannun, Y. A. 1993. Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J. Biol. Chem. 268:26226-26232.Google Scholar
  23. 23.
    Zhang, P., Liu, B., Jenkins, G. M., Hannun, Y. A., and Obeid, L. M. 1997. Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J. Biol. Chem. 272:9609-9612.Google Scholar
  24. 24.
    Birbes, H., El Bawab, S., Hannun, Y. A., and Obeid, L. M. 2001. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 15:2669-2679.Google Scholar
  25. 25.
    Kanto, T., Kalinski, P., Hunter, O. C., Lotze, M. T., and Amoscato, A. A. 2001. Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. 167:3773-3784.Google Scholar
  26. 26.
    Selzner, M., Bielawska, A., Morse, M. A., Rudiger, H. A., Sindram, D., Hannun, Y. A., and Clavien, P. A. 2001. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 61:1233-1240.Google Scholar
  27. 27.
    Nicholson, K. M., Quinn, D. M., Kellett, G. L., and Warr, J. R. 1999. Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br. J. Cancer 81:423-430.Google Scholar
  28. 28.
    Edsall, L. C., Pirianov, G. G., and Spiegel, S. 1997. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci. 17:6952-6960.Google Scholar
  29. 29.
    Xia, P., Wang, L., Gamble, J. R., and Vadas, M. A. 1999. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J. Biol. Chem. 274:34499-34505.Google Scholar
  30. 30.
    Mandala, S. M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., Bergstrom, J., Kurtz, M. B., and Spiegel, S. 2000. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc. Natl. Acad. Sci. U.S.A. 97:7859-7864.Google Scholar
  31. 31.
    Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R. 1995. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405-414.Google Scholar
  32. 32.
    Xu, J., Yeh, C. H., Chen, S., He, L., Sensi, S. L., Canzoniero, L. M., Choi, D. W., and Hsu, C. Y. 1998. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/ cycloheximide-induced cerebral endothelial cell death. J. Biol. Chem. 273:16521-16526.Google Scholar
  33. 33.
    Perry, D. K., Carton, J., Shah, A. K., Meredith, F., Uhlinger, D. J., and Hannun, Y. A. 2000. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J. Biol. Chem. 275:9078-9084.Google Scholar
  34. 34.
    Kroesen, B. J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., de Leij, L., and Hannun, Y. A. 2001. Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J. Biol. Chem. 276:13606-13614.Google Scholar
  35. 35.
    Olivera, A., Kohama, T., Edsall, L., Nava, V., Cuvillier, O., Poulton, S., and Spiegel, S. 1999. Sphingosine kinase overexpression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell. Biol. 147: 545-557.Google Scholar
  36. 36.
    Edsall, L., Cuvillier, O., Twitty, S., Spiegel, S., and Milstien, S. 2001. Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells. J. Neurochem. 76:1573-1584.Google Scholar
  37. 37.
    Liu, Y. Y., Han, T. Y., Giuliano, A. E., and Cabot, M. C. 2001. Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J. 15:719-730.Google Scholar
  38. 38.
    Higuchi, M., Singh, S., Jaffrézou, J. P., and Aggarwal, B. B. 1996. Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor κB activation. J. Immunol. 156:297-304.Google Scholar
  39. 39.
    Chen, J. K., Capdevila, J., and Harris, R. C. 2001. Cytochrome p450 epoxygenase metabolism of arachidonic acid inhibits apoptosis. Mol. Cell Biol. 21:6322-6331.Google Scholar
  40. 40.
    Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., and Fainzilber, M. 2002. NGF-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem. 277:9812-9818Google Scholar
  41. 41.
    Oses-Prieto, J. A., Lopez-Moratalla, N., Santiago, E., Jaffrézou, J. P., and Lopez-Zabalza, M. J. 2000. Molecular mechanisms of apoptosis induced by an immunomodulating peptide on human monocytes. Arch. Biochem. Biophys. 379:353-362.Google Scholar
  42. 42.
    Sawada, M., Nakashima, S., Kiyono, T., Yamada, J., Hara, S., Nakagawa, M., Shinoda, J., and Sakai, N. 2002. Acid sphingomyelinase activation requires caspase-8 but not p53 nor reactive oxygen species during Fas-induced apoptosis in human glioma cells. Exp. Cell Res. 273:157-168.Google Scholar
  43. 43.
    Ségui, B., Bezombes, C., Uro-Coste, E., Medin, J. A., Andrieu-Abadie, N., Augé, N., Brouchet, A., Laurent, G., Salvayre, R., Jaffrézou, J. P., and Levade, T. 2000. Stress-induced apoptosis is not mediated by endolysosomal ceramide. FASEB J. 14:36-47.Google Scholar
  44. 44.
    Burek, C., Roth, J., Koch, H. G., Harzer, K., Los, M., and Schulze-Osthoff, K. 2001. The role of ceramide in receptor-and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene 20:6493-6502.Google Scholar
  45. 45.
    Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., and Del Poeta, M. M. 2001. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 15:201-212.Google Scholar
  46. 46.
    Cheng, J., Park, T. S., Fischl, A. S., and Ye, X. S. 2001. Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol. Cell Biol. 21:6198-6209.Google Scholar
  47. 47.
    Pronk, G. J., Ramer, K., Amiri, P., and Williams, L. T. 1996. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science, 271:808-810.Google Scholar
  48. 48.
    Adachi-Yamada, T., Gotoh, T., Sugimura, I., Tateno, M., Nishida, Y., Onuki, T., and Date, H. 1999. De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol. Cell Biol. 19:7276-8726.Google Scholar
  49. 49.
    Wright, S. C., Zheng, H., and Zhong, J. 1996. Tumor cell resistance to apoptosis due to a defect in the activation of sphingomyelinase and the 24 kDa apoptotic protease (AP24). FASEB J. 10:325-332.Google Scholar
  50. 50.
    Cai, Z., Bettaieb, A., El Mahdani, N., Legres, L. G., Stancou, R., Masliab, J., and Chouaib, S. 1997. Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-α-mediated cytotoxicity. J. Biol. Chem. 272:6918-6926.Google Scholar
  51. 51.
    Chmura, S. J., Nodzenski, E., Beckett, M. A., Kufe, D. W., Quintans, J., and Weichselbaum, R. R. 1997. Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res. 57:1270-1275.Google Scholar
  52. 52.
    Michael, J. M., Lavin, M. F., and Watters, D. J. 1997. Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling. Cancer Res. 57:3600-3605.Google Scholar
  53. 53.
    Bruno, A. P., Laurent, G., Averbeck, D., Demur, C., Bonnet, J., Bettaieb, A., Levade, T., and Jaffrézou, J. P. 1998. Lack of ceramide generation in TF-1 human myeloid leukemic cells resistant to ionizing radiation. Cell Death Differ. 5:172-182.Google Scholar
  54. 54.
    Wang, X. Z., Beebe, J. R., Pwiti, L., Bielawska, A., and Smyth, M. J. 1999. Aberrant sphingolipid signaling is involved in the resistance of prostate cancer cell lines to chemotherapy. Cancer Res. 59:5842-5848.Google Scholar
  55. 55.
    Nava, V. E., Cuvillier, O., Edsall, L. C., Kimura, K., Milstien, S., Gelmann, E. P., and Spiegel, S. 2000. Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res. 60:4468-4474.Google Scholar
  56. 56.
    Haimovitz-Friedman, A., Kan, C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z., and Kolesnick, R. N. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180:525-535.Google Scholar
  57. 57.
    Jarvis, W. D., Fornari, F. A., Gewirtz, D. A., Kolesnick, R. N., and Grant, S. 1994. Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J. Biol. Chem. 269:31685-31692.Google Scholar
  58. 58.
    Mansat, V., Laurent, G., Levade, T., Bettaieb, A., and Jaffrézou, J. P. 1997. The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res. 57:5300-5304.Google Scholar
  59. 59.
    Pena, L. A., Fuks, Z., and Kolesnick, R. N. 2000. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 60:321-327.Google Scholar
  60. 60.
    Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C., and Kolesnick, R. 2001. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293-297.Google Scholar
  61. 61.
    Bezombes, C., Maestre, N., Laurent, G., Levade, T., Bettaieb, A., and Jaffrézou, J. P. 1998. Restoration of TNF-α-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833. FASEB J. 12:101-109.Google Scholar
  62. 62.
    Senchenkov, A., Litvak, D. A., and Cabot, M. C. 2001. Targeting ceramide metabolism—a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 93:347-357.Google Scholar
  63. 63.
    Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E. H., Fuks, Z., and Kolesnick, R. 1996. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189-199.Google Scholar
  64. 64.
    Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., Edwards, C. K., Schuchman, E. H., Fuks, Z., and Kolesnick, R. 1997. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186:1831-1841.Google Scholar
  65. 65.
    de Maria, R., Rippo, M. R., Schuchman, E. H., and Testi, R. 1998. Acidic sphingomyelinase (ASM) is necessary for Fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J. Exp. Med. 187:897-902.Google Scholar
  66. 66.
    Kirschnek, S., Paris, F., Weller, M., Grassme, H., Ferlinz, K., Riehle, A., Fuks, Z., Kolesnick, R., and Gulbins, E. 2000. CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J. Biol. Chem. 275:27316-27323.Google Scholar
  67. 67.
    Lozano, J., Menendez, S., Morales, A., Ehleiter, D., Liao, W. C., Wagman, R., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. 2001. Cell autonomous apoptosis defects in acid sphingomyelinase knockout fibroblasts. J. Biol. Chem. 276:442-448.Google Scholar
  68. 68.
    Zhang, Y., Mattjus, P., Schmid, P. C., Dong, Z., Zhong, S., Ma, W. Y., Brown, R. E., Bode, A. M., and Schmid, H. H. 2001. Involvement of the acid sphingomyelinase pathway in UVA-induced apoptosis. J. Biol. Chem. 276:11775-11782.Google Scholar
  69. 69.
    Boesen de Cock, J. G. R., Tepper, A. D., de Vries, E., van Blitterswijk, W. J., and Borst, J. 1998. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J. Biol. Chem. 273:7560-7565.Google Scholar
  70. 70.
    Nix, M., and Stoffel, W. 2000. Perturbation of membrane microdomains reduces mitogenic signaling and increases susceptibility to apoptosis after T cell receptor stimulation. Cell Death Differ. 7:413-424.Google Scholar
  71. 71.
    Bezombes, C., Ségui, B., Cuvillier, O., Bruno, A. P., Uro-Coste, E., Gouazé, V., Andrieu-Abadie, N., Carpentier, S., Laurent, G., Salvayre, R., Jaffrézou, J. P., and Levade, T. 2001. Lysosomal sphingomyelinase is not solicited for apoptosis signaling. FASEB J. 15:297-299.Google Scholar
  72. 72.
    Wiegmann, K., Schütze, S., Machleidt, T., Witte, D., and Krönke, M. 1994. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78: 1005-1015.Google Scholar
  73. 73.
    Cifone, M. G., Roncaioli, P., De Maria, R., Camarda, G., Santoni, A., Ruberti, G., and Testi, R. 1995. Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J. 14:5859-5868.Google Scholar
  74. 74.
    Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O'Rourke, K., Kischkel, F. C., Hellbardt, S., Krammer, P. H., Peter, M. E., and Dixit, V. M. 1996. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem. 271:4961-4965.Google Scholar
  75. 75.
    Levade, T. and Jaffrézou, J. P. 1999. Signalling sphingomyelinases: which, where, how and why? Biochim. Biophys. Acta. 1438:1-17.Google Scholar
  76. 76.
    Jayadev, S., Hayter, H. L., Andrieu, N., Gamard, C. J., Liu, B., Balu, R., Hayakawa, M., Ito, F., and Hannun, Y. A. 1997. Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells. J. Biol. Chem. 272:17196-17203.Google Scholar
  77. 77.
    Mansat, V., Bettaieb, A., Levade, T., Laurent, G., and Jaffrézou, J. P. 1997. Serine protease inhibitors block neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. FASEB J. 11:695-702.Google Scholar
  78. 78.
    Bezombes, C., Plo, I., Mansat-De Mas, V., Quillet-Mary, A., Negre-Salvayre, A., Laurent, G., and Jaffrezou, J. P. 2001. Oxidative stress-induced activation of Lyn recruits sphingomyelinase and is requisite for its stimulation by Ara-C. FASEB J. 15:1583-1585.Google Scholar
  79. 79.
    Liu, B., Andrieu-Abadie, N., Levade, T., Zhang, P., Obeid, L. M. and Hannun, Y. A. 1998. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J. Biol. Chem. 273:11313-11320.Google Scholar
  80. 80.
    Gouazé, V., Mirault, M. E., Carpentier, S., Salvayre, R., Levade, T., and Andrieu-Abadie, N. 2001. Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Mol. Pharmacol. 60:488-496.Google Scholar
  81. 81.
    Adam, D., Wiegmann, K., Adam-Klages, S., Ruff, A., and Krönke, M. 1996. A novel cytoplasmic domain of the p55 Tumor Necrosis Factor receptor initiates the neutral sphingomyelinase pathway. J. Biol. Chem. 1996:14617-14622.Google Scholar
  82. 82.
    Adam-Klages, S., Adam, D., Wiegmann, K., Struve, S., Kolanus, W., Schneider-Mergener, J., and Krönke, M. 1996. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell. 86:937-947.Google Scholar
  83. 83.
    Kreder, D., Krut, O., Adam-Klages, S., Wiegmann, K., Scherer, G., Plitz, T., Jensen, J. M., Proksch, E., Steinmann, J., Pfeffer, K., and Krönke, M. 1999. Impaired neutral sphingomyelinase activation and cutaneous barrier repair in FAN-deficient mice. EMBO J. 18:2472-2479.Google Scholar
  84. 84.
    Ségui, B., Andrieu-Abadie, N., Adam-Klages, S., Meilhac, O., Kreder, D., Garcia, V., Bruno, A. P., Jaffrézou, J. P., Salvayre, R., Krönke, M., and Levade, T. 1999. CD40 signals apoptosis through FAN-regulated activation of the sphingomyelin-ceramide pathway. J. Biol. Chem. 274:37251-37258.Google Scholar
  85. 85.
    Ségui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Lévêque, S., Caspar-Bauguil, S., Coudert, J., Salvayre, R., Krönke, M., and Levade, T. 2001. Involvement of FAN in tumor necrosis factor-induced apoptosis. J. Clin. Invest. 108:143-151.Google Scholar
  86. 86.
    Lee, T. C., Ou, M. C., Shinozaki, K., Malone, B., and Snyder, F. 1996. Biosynthesis of N-acetylsphingosine by plateletactivating factor: sphingosine CoA-independent transacetylase in HL-60 cells. J. Biol. Chem. 271:209-217.Google Scholar
  87. 87.
    Holopainen, J. M., Angelova, M. I., and Kinnunen, P. K. 2000. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78:830-838.Google Scholar
  88. 88.
    Kolesnick, R. N., Goni, F. M., and Alonso, A. 2000. Compartmentalization of ceramide signaling: physical foundations and biological effects. J. Cell Physiol. 184:285-300.Google Scholar
  89. 89.
    Zha, X., Pierini, L. M., Leopold, P. L., Skiba, P. J., Tabas, I., and Maxfield, F. R. 1998. Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell Biol. 140:39-47.Google Scholar
  90. 90.
    Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. 2001. Ceramide enables fas to cap and kill. J. Biol. Chem. 276:23954-23961.Google Scholar
  91. 91.
    Perry, D. K. and Hannun, Y. A. 1999. The use of diglyceride kinase for quantifying ceramide. Trends Biochem. Sci. 24: 226-227.Google Scholar
  92. 92.
    Kono, K., Tanaka, M., Ogita, T., Hosoya, T., and Kohama, T. 2000. F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete. J. Antibiot. (Tokyo) 53:459-466.Google Scholar
  93. 93.
    Kono, K., Tanaka, M., Ogita, T., and Kohama, T. 2000. Characterization of B-5354c, a new sphingosine kinase inhibitor, produced by a marine bacterium. J. Antibiot. (Tokyo) 53: 759-764.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Thierry Levade
    • 1
  • Sophie Malagarie-Cazenave
    • 1
  • Valérie Gouazé
    • 1
  • Bruno Ségui
    • 1
  • Claudine Tardy
    • 1
  • Susan Betito
    • 1
  • Nathalie Andrieu-Abadie
    • 1
  • Olivier Cuvillier
    • 1
  1. 1.INSERM U.466, Laboratoire de BiochimieToulouseFrance

Personalised recommendations