Neurochemical Research

, Volume 27, Issue 7–8, pp 583–592

Gangliosides with O-Acetylated Sialic Acids in Tumors of Neuroectodermal Origin

  • Guido Kohla
  • Eggert Stockfleth
  • Roland Schauer
Article

Abstract

Gangliosides, carrying an O-acetylated sialic acid in their carbohydrate moiety, are often found in growing and developing tissues, especially of neuro-ectodermal origin. The most prominent one is 9-O-Ac-GD3, which is considered as an oncofetal marker in animal and human tumors like neuronal tumors, melanoma, basalioma or breast cancer, as well as in psoriatic lesions. Also other gangliosides like GD2 or GT3 were found to be O-acetylated in their terminal sialic acid. In this review we are summarising the occurrence of such gangliosides in normal and transformed tissues and delineate a more general theory that O-acetylated sialic acids in gangliosides are a universal marker for growing cells and tissues.

Ganglioside neuroectodermal O-acetylation sialic acid tumor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fishman, P. H. and Brady, R. O. 1976. Biosynthesis and function of gangliosides. Science 194:906-915.Google Scholar
  2. 2.
    Tettamanti, G. and Riboni, L. 1994. Biological function of Gangliosides. Pages 77-100, in Svennerholm, L., Asbury, A. K., Reisfeld, R. A., Sandhoff, K., Suzuki, K., Tettamanti, G., and Toffano, G. (eds.), Progress in brain research, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Ledeen, R. W., Wu, G., Cannella, M. S., Oderfeld-Nowak, B., and Cuello, A. C. 1990. Gangliosides as neurotrophic agents: studies on the mechanism of action. Acta Neurobiol. Exp. (Warsz.) 50:439-449.Google Scholar
  4. 4.
    Sabel, B. A., Gottlieb, J., and Schneider, G. E. 1988. Exogenous GM1 gangliosides protect against retrograde degeneration following posterior neocortex lesions in developing hamsters. Brain Res. 459:373-380.Google Scholar
  5. 5.
    Rösner, H., al Aqtum, M., and Rahmann, H. 1992. Gangliosides and neuronal differentiation. Neurochem. Int. 20:339-351.Google Scholar
  6. 6.
    Igarashi, M., Waki, H., Saito, S., Komiya, Y., and Ando, S. 1994. Characteristics of gangliosides including O-acetylated species in growth cone membranes at several developmental stages in rat forebrain. Brain Res. Dev. Brain Res. 78:17-24.Google Scholar
  7. 7.
    Ariga, T. and Yu, R. K. 1999. GM1 inhibits amyloid β-protein-induced cytokine release. Neurochem. Res. 24:219-226.Google Scholar
  8. 8.
    Kotani, M., Tajima, Y., Shimoda, Y., Irie, A., Kubo, H., and Tai, T. 2000. Ganglioside GT1b in rat brain binds to p58, a brain-specific sodium-dependent inorganic phosphate cotransporter: expression cloning with a specific monoclonal antibody to ganglioside GT1b-binding protein. J. Biochem. (Tokyo) 127:13-22.Google Scholar
  9. 9.
    Harder, T., Scheiffele, P., Verkade, P., and Simons, K. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:929-942.Google Scholar
  10. 10.
    Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:569-572.Google Scholar
  11. 11.
    Probstmeier, R., Pesheva, P. 1999. Tenascin-C inhibits β1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9:101-114.Google Scholar
  12. 12.
    Reivinen, J., Holthofer, H., and Miettinen, A. 1998. Tyrosine phosphorylation of p72syk induced by anti-9-O-acetyl GD3 antibodies in human peripheral blood mononuclear cells. Scand. J. Immunol. 48:615-622.Google Scholar
  13. 13.
    Holmgren, J., Lonnroth, I., Mansson, J., and Svennerholm, L. 1975. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. U. S. A. 72:2520-2524.Google Scholar
  14. 14.
    Takamizawa, K., Iwamori, M., Kozaki, S., Sakaguchi, G., Tanaka, R., Takayama, H., and Nagai, Y. 1986. TLC immunstaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett. 201:229-232.Google Scholar
  15. 15.
    Müthing, J., Unland, F., Heitmann, D., Orlich, M., Hanisch, F. G., Peter-Katalinic, J., Knauper, V., Tschesche, H., Kelm, S., Schauer, R., and Lehmann, J. 1993. Different binding capacities of influenza A and Sendai viruses to gangliosides from human granulocytes. Glycoconj. J. 10:120-126.Google Scholar
  16. 16.
    Suzuki, Y., Nakao, T., Ito, T., Watanabe, N., Toda, Y., Xu, G., Suzuki, T., Kobayashi, T., Kimura, Y., Yamada, A., Sugawara, K., Nishimura, H., Kitame, F., Nakamura, K., Deya, E., Kiso, M., and Hasegawa, A. 1992. Structural determination of gangliosides that bind to influenza A, B, and C viruses by an improved binding assay: strain-specific receptor epitopes in sialo-sugar chains. Virology 189:121-131.Google Scholar
  17. 17.
    Nagai, Y. and Iwamori, M. 1995. Cellular biology of gangliosides. Pages 197-241, in Rosenberg, A. (ed.), Biology of the sialic acids, Plenum Press, New York.Google Scholar
  18. 18.
    Vyas, A. A. and Schnaar, R. L. 2001. Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677-682.Google Scholar
  19. 19.
    Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., and Nakamura, M. 1989. Determination of mono-O-acetylated N-acetyl-neuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal. Biochem. 179:162-166.Google Scholar
  20. 20.
    Hubl, U., Ishida, H., Kiso, M., Hasegawa, A., and Schauer, R. 2000. Studies on the specificity and sensitivity of the influenza C virus binding assay for 9-O-acetylated sialic acids and its application to human melanomas. J. Biochem. (Tokyo) 127:1021-1031.Google Scholar
  21. 21.
    Klein, A., Diaz, S., Ferreira, I., Lamblin, G., Roussel, P., and Manzi, A. E. 1997. New sialic acids from biological sources identified by a comprehensive and sensitive approach: liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIA quinoxalinones. Glycobiology 7:421-432.Google Scholar
  22. 22.
    Mason, D., Andre, P., Bensussan, A., Buckley, C., Civin, C., Clark, E., de Haas, M., Goyert, S., Hadam, M., Hart, D., Horejsi, V., Meuer, S., Morrissey, J., Schwartz-Albiez, R., Shaw, S., Simmons, D., Uguccioni, M., van der Schoot, E., Vivier, E., and Zola, H. 2001. CD antigens 2001. Eur. J. Immunol. 31:2841-2847.Google Scholar
  23. 23.
    Mendez-Otero, R. and Friedman, J. E. 1996. Role of acetylated gangliosides on neurite extension. Eur. J. Cell Biol. 71:192-198.Google Scholar
  24. 24.
    Araujo, H., Menezes, M., and Mendez-Otero, R. 1997. Blockage of 9-O-acetyl gangliosides induces microtubule depolymerization in growth cones and neurites. Eur. J. Cell Biol. 72:202-213.Google Scholar
  25. 25.
    Gocht, A., Rutter, G., and Kniep, B. 1998. Changed expression of 9-O-acetyl GD3 (CDw60) in benign and atypical proliferative lesions and carcinomas of the human breast. Histochem. Cell Biol. 110:217-229.Google Scholar
  26. 26.
    Vater, M., Kniep, B., Gross, H. J., Claus, C., Dippold, W., and Schwartz-Albiez, R. 1997. The 9-O-acetylated disialosyl carbohydrate sequence of CDw60 is a marker on activated human B lymphocytes. Immunol. Lett. 59:151-157.Google Scholar
  27. 27.
    Kniep, B., Claus, C., Peter-Katalinic, J., Monner, D. A., Dippold, W., and Nimtz, M. 1995. 7-O-acetyl-GD3 in human T-lymphocytes is detected by a specific T-cell-activating monoclonal antibody. J. Biol. Chem. 270:30173-30180.Google Scholar
  28. 28.
    Zhang, G., Ji, L., Kurono, S., Fujita, S. C., Furuya, S., and Hirabayashi, Y. 1997. Developmentally regulated O-acetylated sialoglycans in the central nervous system revealed by a new monoclonal antibody 493D4 recognizing a wide range of O-acetylated glycoconjugates. Glycoconj. J. 14:847-857.Google Scholar
  29. 29.
    Reuter, G. and Schauer, R. 1987. Isolation and analysis of gangliosides with O-acetylated sialic acids. in Rahmann, H. (ed.), Gangliosides and modulation of neuronal functions, Springer, Berlin.Google Scholar
  30. 30.
    Gocht, A., Gadatsch, A., Rutter, G., and Kniep, B. 2000. CDw60: an antigen expressed in many normal tissues and in some tumours. Histochem. J. 32:447-456.Google Scholar
  31. 31.
    Ladisch, S. and Li, R. 2000. Purification and analysis of gangliosides. Methods Enzymol. 312:135-145.Google Scholar
  32. 32.
    Yu, R. K. and Ariga, T. 2000. Ganglioside analysis by high-performance thin-layer chromatography. Methods Enzymol. 312:115-134.Google Scholar
  33. 33.
    Radin, N. S. 1976. Preparative isolation of cerebrosides (galactosyl and glucosyl ceramide). J. Lipid Res. 17:290-293.Google Scholar
  34. 34.
    Whalen, M. M. and Wild, G. C. 1987. The major gangliosides of the bovine pineal body. Lipids 22:17-21.Google Scholar
  35. 35.
    Veh, R. W., Sander, M., Haverkamp, J., and Schauer, R. 1979. Demonstration of O-acetyl groups in ganglioside-bound sialic acids and their effect on the action of bacterial and mammalian neuraminidases. in Gregory, J. D. and Jeanloz, R. W. (eds.), Proceedings of the Fourth International Symposium on Glyco-conjugates, Academic Press Inc.Google Scholar
  36. 36.
    Sonnino, S., Ghidoni, R., Chigorno, V., Masserini, M., and Tettamanti, G. 1983. Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkalilabile gangliosides from the brain of different animals. Anal. biochem. 128:104-114.Google Scholar
  37. 37.
    Magnani, J. L., Brockhaus, M., Smith, D. F., and Ginsburg, V. 1982. Detection of glycolipid ligands by direct binding of carbohydrate-binding proteins to thin-layer chromatograms. Methods Enzymol. 83:235-241.Google Scholar
  38. 38.
    Ishikawa, D. and Taki, T. 2000. Thin-layer chromatography blotting using polyvinylidene difluoride membrane (far-eastern blotting) and its applications. Methods Enzymol. 312:145-157.Google Scholar
  39. 39.
    Siebert, H. C., von der Lieth, C. W., Dong, X., Reuter, G., Schauer, R., Gabius, H. J., and Vliegenthart, J. F. G. 1996. Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids. Glycobiology 6:561-572.Google Scholar
  40. 40.
    Zimmer, G., Reuter, G., and Schauer, R. 1992. Use of influenza C virus for detection of 9-O-acetylated sialic acids on immobilized glycoconjugates by esterase activity. Eur. J. Biochem. 204:209-215.Google Scholar
  41. 41.
    Fahr, C. and Schauer, R. 2001. Detection of sialic acids and gangliosides with special reference to 9-O-acetylated species in basaliomas and normal human skin. J. Invest. Dermatol. 116:254-260.Google Scholar
  42. 42.
    Schauer, R., Schmid. H., Pommerencke, J., Iwersen, M., and Kohla, G. 2001. Metabolism and role of O-acetylated sialic acids. Pages 325-342, in Wu. A. M. (ed.). Molecular immunology of complex carbohydrates 2, Kluwer Academics/Plenum Press, New York.Google Scholar
  43. 43.
    Haverkamp, J., Veh, R. W., Sander, M., Schauer, R., Kamerling, J. P., and Vliegenthart, J. G. 1977. Demonstration of 9-O-acetyl-N-acetylneuraminic acid in brain gangliosides from various vertebrates including man. Hoppe Seylers. Z. Physiol. Chem. 358:1609-1612.Google Scholar
  44. 44.
    Chou, D. K., Dodd, J., Jessell, T. M., Costello, C. E., and Jungalwala, F. B. 1989. Identification of α-galactose (α-fucose)-asialo-GM1 glycolipid expressed by subsets of rat dorsal root ganglion neurons. J. Biol. Chem. 264:3409-3415.Google Scholar
  45. 45.
    Chou, D. K., Suzuki, Y., and Jungalwala, F. B. 1996. Expression of neolactoglycolipids: sialosyl-, disialosyl-, O-acetyldisialosyl-and fucosyl-derivatives of neolactotetraosyl ceramide and neolactohexaosyl ceramide in the developing cerebral cortex and cerebellum. Glycoconj. J. 13:295-305.Google Scholar
  46. 46.
    Ariga, T., Blaine, G. M., Yoshino, H., Dawson, G., Kanda, T., Zeng, G. C., Kasama, T., Kushi, Y., and Yu, R. K. 1995. Glycosphingolipid composition of murine neuroblastoma cells: O-acetylesterase gene downregulates the expression of O-acetylated GD3. Biochemistry 34:11500-11507.Google Scholar
  47. 47.
    Varki, A., Hooshmand, F., Diaz, S., Varki, N. M., and Hedrick, S. M. 1991. Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell 65:65-74.Google Scholar
  48. 48.
    Seyfried, T. N. and Yu, R. K. 1985. Ganglioside GD3: structure, cellular distribution, and possible function. Mol. Cell Biochem. 68:3-10.Google Scholar
  49. 49.
    Fukumoto, S., Mutoh, T., Hasegawa, T., Miyazaki, H., Okada, M., Goto, G., Furukawa, K., and Urano, T. 2000. GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J. Biol. Chem. 275:5832-5838.Google Scholar
  50. 50.
    Cheresh, D. A., Reisfeld, R. A., and Varki, A. P. 1984. O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science 225:844-846.Google Scholar
  51. 51.
    Manzi, A. E., Sjoberg, E. R., Diaz, S., and Varki, A. 1990. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J. Biol. Chem. 265:13091-13103.Google Scholar
  52. 52.
    Sjoberg, E. R., Manzi, A. E., Khoo, K. H., Dell, A., and Varki, A. 1992. Structural and immunological characterization of O-acetylated GD2. Evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells. J. Biol. Chem. 267:16200-16211.Google Scholar
  53. 53.
    Kniep, B., Peter-Katalinic, J., Flegel, W., Northoff, H., and Rieber, E. P. 1992. CDw60 antibodies bind to acetylated forms of ganglioside GD3. Biochem. Biophys. Res. Commun. 187:1343-1349.Google Scholar
  54. 54.
    Ravindranath, M. H., Paulson, J. C., and Irie, R. F. 1988. Human melanoma antigen O-acetylated ganglioside GD3 is recognized by Cancer antennarius lectin. J. Biol. Chem. 263:2079-2086.Google Scholar
  55. 55.
    Birklé, S., Ren, S., Slominski, A., Zeng, G., Gao, L., and Yu, R. K. 1999. Down-regulation of the expression of O-acetyl-GD3 by the O-acetylesterase cDNA in hamster melanoma cells: effects on cellular proliferation, differentiation, and melanogenesis. J. Neurochem. 72:954-961.Google Scholar
  56. 56.
    Birklé, S., Gao, L., Zeng, G., and Yu, R. K. 2000. Down-regulation of GD3 ganglioside and its O-acetylated derivative by stable transfection with antisense vector against GD3-synthase gene expression in hamster melanoma cells: effects on cellular growth, melanogenesis, and dendricity. J. Neurochem. 74:547-554.Google Scholar
  57. 57.
    Paller, A. S., Arnsmeier, S. L., Robinson, J. K., and Bremer, E. G. 1992. Alteration in keratinocyte ganglioside content in basal cell carcinomas. J. Invest. Dermatol. 98:226-232.Google Scholar
  58. 58.
    Heidenheim, M., Hansen, E. R., and Baadsgaard, O. 1995. CDw60, which identifies the acetylated form of GD3 gangliosides, is strongly expressed in human basal cell carcinoma. Br. J. Dermatol. 133:392-397.Google Scholar
  59. 59.
    Malykh, Y. N., Schauer, R., and Shaw, L. 2001. N-Glycolylneuraminic acid in human tumours. Biochimie 83:623-634.Google Scholar
  60. 60.
    Marquina, G., Waki, H., Fernandez, L. E., Kon, K., Carr, A., Valiente, O., Perez, R., and Ando, S. 1996. Gangliosides expressed in human breast cancer. Cancer Res. 56:5165-5171.Google Scholar
  61. 61.
    Baadsgaard, O., Tong, P., Elder, J. T., Hansen, E. R., Ho, V., Hammerberg, C., Lange-Vejlsgaard, G., Fox, D. A., Fisher, G., and Chan, L. S. 1990. UM4D4+ (CDw60) T cells are compartmentalized into psoriatic skin and release lymphokines that induce a keratinocyte phenotype expressed in psoriatic lesions. J. Invest. Dermatol. 95:275-282.Google Scholar
  62. 62.
    Huang, B. B., Bonish, B. K., Chaturvedi, V., Qin, J. Z., and Nickoloff, B. J. 2001. Keratinocyte CDw60 expression is modulated by both a Th-1 type cytokine IFN-γ and Th-2 cytokines IL-4 and IL-13: relevance to psoriasis. J. Invest. Dermatol. 116:305-312.Google Scholar
  63. 63.
    Kelm, S. and Schauer, R. 1997. Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175:137-240.Google Scholar
  64. 64.
    Zeng, G., Li, D., Gao, L., Birkle, S., Bieberich, E., Tokuda, A., and Yu, R. K. 1999. Alteration of ganglioside composition by stable transfection with antisense vectors against GD3-synthase gene expression. Biochem. 38:8762-8769.Google Scholar
  65. 65.
    Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S., and Delannoy, P. 2001. The human sialyltransferase family. Biochimie 83:727-737.Google Scholar
  66. 66.
    Ito, H., Hiraiwa, N., Sawada-Kasugai, M., Akamatsu, S., Tachikawa, T., Kasai, Y., Akiyama, S., Ito, K., Takagi, H., and Kannagi, R. 1997. Altered mRNA expression of specific molecular species of fucosyl-and sialyl-transferases in human colorectal cancer tissues. Int. J. Cancer 71:556-564.Google Scholar
  67. 67.
    Osanai, T., Watanabe, Y., and Sanai, Y. 1997. Glycolipid sialyltransferases are enhanced during neural differentiation of mouse embryonic carcinoma cells, P19. Biochem. Biophys. Res. Commun. 241:327-333.Google Scholar
  68. 68.
    Ruan, S., Raj, B. K., and Lloyd, K. O. 1999. Relationship of glycosyltransferases and mRNA levels to ganglioside expression in neuroblastoma and melanoma cells. J. Neurochem. 72:514-521.Google Scholar
  69. 69.
    Yamashiro, S., Okada, M., Haraguchi, M., Furukawa, K., Lloyd, K. O., Shiku, H., and Furukawa, K. 1995. Expression of α2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj. J. 12:894-900.Google Scholar
  70. 70.
    Angata, T. and Varki, A. 2002. Chemical diversity in the sialic acids and realated α-keto acids: an evolutionary perspective. Chem. Rev. 102:439-470.Google Scholar
  71. 71.
    Schauer, R. and Kamerling, J. P. 1997. Chemistry, biochemistry and biology of sialic acids. Pages 243-402, in Montreuil, J., Vliegenthart, J. F. G., and Schachter, H. (eds.), Glycoproteins II, Elsevier, Amsterdam.Google Scholar
  72. 72.
    Kanamori, A., Nakayama, J., Fukuda, M. N., Stallcup, W. B., Sasaki, K., Fukuda, M., and Hirabayashi, Y. 1997. Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: A putative acetyl-CoA transporter. Proc. Natl. Acad. Sci. U. S. A. 94:2897-2902.Google Scholar
  73. 73.
    Huang, C. B., Xu, J. A., Wu, K. R., and Wang, W. M. 1988. O-acetyl sialomucin and differentiation of stomach cancer: a histochemical study. Anticancer Res. 8:829-832.Google Scholar
  74. 74.
    Hutchins, J. T., Reading, C. L., Giavazzi, R., Hoaglund, J., and Jessup, J. M. 1988. Distribution of mono-, di, and tri-O-acetylated sialic acids in normal and neoplastic colon. Cancer Res. 48:483-489.Google Scholar
  75. 75.
    Corfield, A. P., Myerscough, N., Warren, B. F., Durdey, P., Paraskeva, C., and Schauer, R. 1999. Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma-carcinoma sequence. Glycoconj. J. 16:307-317.Google Scholar
  76. 76.
    Cheresh, D. A., Varki, A. P., Varki, N. M., Stallcup. W. B., Levine, J., and Reisfeld, R. A. 1984. A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J. Biol. Chem. 259:7453-7459.Google Scholar
  77. 77.
    Thurin, J., Herlyn, M., Hindsgaul, O., Strömberg, N., Karlsson, K. A., Elder, D., Steplewski, Z., and Koprowski, H. 1985. Proton NMR and fast-atom bombardment mass spectrometry analysis of the melanoma-associated ganglioside 9-O-acetyl-GD3. J. Biol. Chem. 260:14556-14563.Google Scholar
  78. 78.
    Bonafede, D. M., Macala, L. J., Constantine-Paton, M., and Yu, R. K. 1989. Isolation and characterization of ganglioside 9-O-acetyl-GD3 from bovine buttermilk. Lipids 24:680-684.Google Scholar
  79. 79.
    Hirabayashi, Y., Hirota, M., Suzuki, Y., Matsumoto, M., Obata, K., and Ando, S. 1989. Developmentally expressed O-acetyl ganglioside GT3 in fetal rat cerebral cortex. Neurosci. Lett. 106:193-198.Google Scholar
  80. 80.
    Waki, H., Murata, A., Kon, K., Maruyama, K., Kimura, S., Ogura, H., and Ando, S. 1993. Isolation and characterization of a trisialyllactosylceramide, GT3, containing an O-acetylated sialic acid in cod fish brain. J. Biochem.(Tokyo) 113: 502-507.Google Scholar
  81. 81.
    Waki, H., Masuzawa, A., Kon, K., and Ando, S. 1993. A new O-acetylated trisialoganglioside, 9-O-acetyl GT2, in cod brain. J. Biochem. (Tokyo) 114:459-462.Google Scholar
  82. 82.
    Gowda, D., Reuter, G., Shukla, A. K., and Schauer, R. 1984. Identification of a disialoganglioside (GD1a) containing terminal N-acetyl-9-O-acetylneuraminic acid in rat erythrocytes. Hoppe-Seyler's Z. Physiol. Chem. 365:1247-1253.Google Scholar
  83. 83.
    Ghidoni, R., Sonnino, S., Tettamanti, G., Baumann, N., Reuter, G., and Schauer, R. 1980. Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J. Biol. Chem. 255:6990-6995.Google Scholar
  84. 84.
    Chigorno, V., Sonnino, S., Ghidoni, R., and Tettamanti, G. 1982. Isolation and characterization of a tetrasialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. Neurochem. Int. 4:531-539.Google Scholar
  85. 85.
    Ishikawa, D. and Taki, T. 2000. Thin-layer chromatography immunostaining. Methods Enzymol. 312:157-159.Google Scholar
  86. 86.
    Levine, J. M., Beasley, L., and Stallcup, W. B. 1984. The D1.1 antigen: a cell surface marker for germinal cells of the central nervous system. J. Neurosci. 4:820-831.Google Scholar
  87. 87.
    Reinhardt-Maelicke, S., Cleeves, V., Kindler-Rohrborn, A., and Rajewsky, M. F. 1990. Differential recognition of a set of O-acetylated gangliosides by monoclonal antibodies RB13-2, D1.1, and JONES during rat brain development. Brain Res. Dev. Brain Res. 51:279-282.Google Scholar
  88. 88.
    Mann, H. B. and Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18:50-60.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Guido Kohla
    • 1
  • Eggert Stockfleth
    • 2
  • Roland Schauer
    • 1
  1. 1.Biochemisches InstitutChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Universitätshautklinik Charité Schumannstraße 20BerlinGermany

Personalised recommendations