Advertisement

Inflammation

, Volume 23, Issue 4, pp 333–360 | Cite as

Amorphous Calcium Phosphate-Mediated Binding of Matrix Metalloproteinase-9 to Fibrin is Inhibited by Pyrophosphate and Bisphosphonate

  • Gregory S. Makowski
  • Melinda L. Ramsby
Article

Abstract

Coordinate regulation of fibrinolytic and collagenolytic systems is essential for normal tissue remodeling and wound healing. To define the molecular mechanisms which link these two proteolytic systems, we have investigated the role of fibrin in matrix metalloproteinase (MMP) function. Both active and latent forms of MMP-9 (gelatinase B) bind to fibrin in a selective, dose-dependent manner; latent enzyme is activated by plasmin during fibrinolysis. Fibrin binding of MMP-9 is mediated by amorphous calcium phosphate (ACP), and proceeds in a step-wise fashion with formation of ACP as the first and rate-limiting step. MMP-9 rapidly binds preformed ACP to yield a transient ACP:MMP-9 complex that avidly binds fibrin. Here we report the effect(s) on fibrin:ACP:MMP-9 formation/dissociation of pyrophosphate (POP), an endogenous calcification inhibitor, and its bisphosphonate analog, alendronate (PCP). MMP-9 was obtained from neutrophil lysate and ACP formation was monitored turbidimetrically. Free MMP-9, ACP:MMP-9 and fibrin:ACP:MMP-9 complexes were analyzed by gelatin zymography. POP at physiologic concentrations (0.5−2.5 μM) inhibited both ACP formation and subsequent fibrin binding of MMP-9 at orthophosphate concentrations of 250 μM. PCP exhibited a similar inhibitory effect. With both substances, inhibition was slightly overcome (>2.5 μM) by higher phosphate (500 μM). In contrast, supraphysiologic concentrations of either POP or PCP (>50 μM) were required to inhibit MMP-9 binding to preformed ACP or to induce dissociation of preformed ACP:MMP-9 complexes (50–100 μM). Neither POP nor PCP had any effect on preformed fibrin:ACP:MMP-9 at concentrations up 1 mM. POP is an endogenous by-product of numerous metabolic pathways and may regulate bone turnover, soft tissue calcification, and contribute to the pathogenesis of calcium pyrophosphate crystal disease (CPPD). These studies support another role for POP and fibrin:ACP:MMP-9 complexes in physiologic and pathologic processes, including tumorigenesis and cancer metastasis.

Keywords

Bisphosphonate Alendronate Gelatin Zymography Amorphous Calcium Phosphate Soft Tissue Calcification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Stetler-Stevenson, W. G., S. Aznavoorian, and L. S. Liotta. 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann. Rev. Cell Biol. 9:541-573.Google Scholar
  2. 2.
    Wysocki, A. B., L. Staiano-Coico, and F. Grinnell. 1993. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J. Invest. Dermatol. 101:64-68.Google Scholar
  3. 3.
    Tryggvason, K., M. Hoyhtya, and T. Salo. 1987. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta 907:191-217.Google Scholar
  4. 4.
    Mignatti, P., and D. B. Rifkin. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73:161-195.Google Scholar
  5. 5.
    Koolwijk, P. A., M. M. Miltenburg, M. G. M. van Erck, M. Oudshoorn, M. J. Niedbala, F. C. Breedveld, and V. W. M. van Hinsbergh. 1995. Activated gelatinase-B (MMP-9) and urokinase-type plasminogen activator in synovial fluids of patients with arthritis. Correlation with clinical and experimental variables of inflammation. J. Rheumatol. 22:385-393.Google Scholar
  6. 6.
    Wucherpfennig, A. L., Y.-P. Li, W. G. Stetler-Stevenson, A. E. Rosenberg, and A. E. Stashenko. 1994. Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J. Bone Min. Res. 9:549-556.Google Scholar
  7. 7.
    Woessner, J. F., Jr. 1994. The family of matrix metalloproteinases. Ann. N.Y. Acad. Sci. 731:11-21.Google Scholar
  8. 8.
    Nagase, H. 1996. Matrix metalloproteinases. In: Zinc Metalloproteinases in Health and Disease, N. M. Hooper, ed. London, England: Taylor and Francis, pp. 153-204.Google Scholar
  9. 9.
    Van Wart, H. E., and H. Birkedal-Hansen. 1990. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U.S.A. 87:5578-5582.Google Scholar
  10. 10.
    Nagase, H. 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378:151-160.Google Scholar
  11. 11.
    Makowski, G. S., and M. L. Ramsby. 1998. Binding of latent matrix metalloproteinase 9 to fibrin: activation via a plasmin-dependent pathway. Inflammation 22:287-305.Google Scholar
  12. 12.
    Rakoczi, I., B. Wiman, and D. Collen. 1978. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim. Biophys. Acta 540:295-300.Google Scholar
  13. 13.
    Mosesson, M. W. 1990. Fibrin polymerization and its regulatory role in hemostasis. J. Clin. Lab. Med. 116:8-17.Google Scholar
  14. 14.
    Murphy, G., and F. Willenbock. 1995. Tissue inhibitors of matrix metalloendopeptidases. Meth. Enzymol. 248:496-510.Google Scholar
  15. 15.
    Willenbock, F., T. Crabbe, P. M. Slocombe, C. W. Sutton, A. J. P. Docherty, M. I. Crockett, M. O'Shea, K. Brocklehurst, I. R. Phillips, and G. Murphy. 1993. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: A kinetic analysis of the inhibition of gelatinase A. Biochemistry 32:4330-4337.Google Scholar
  16. 16.
    Brooks, P. C., S. Stromblad, L. C. Sanders, T. L. von Schalscha, and R. T. Aimes. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with the integrin αvβ3. Cell 85:683-693.Google Scholar
  17. 17.
    Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370:61-65.Google Scholar
  18. 18.
    Makowski, G. S., and M. L. Ramsby. 1998. Binding of latent matrix metalloproteinase 9 to fibrin is mediated by amorphous calcium-phosphate. Inflammation 22:599-617.Google Scholar
  19. 19.
    Dvorak, H. F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl. J. Med. 315:1650-1659.Google Scholar
  20. 20.
    Weinberg, J. B., A. M. M. Pippen, and C. S. Greenberg. 1991. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arth. Rheum. 34:996-1005.Google Scholar
  21. 21.
    Hoylaerts, M., D. C. Rijken, H. R. Lijnen, and D. Collen. 1982. Kinetics of the activation of plasminogen by human tissue plasminogen activator. J. Biol. Chem. 257:2912-2919.Google Scholar
  22. 22.
    Paramo, J. A., M. J. Alfaro, and E. Rocha. 1985. Postoperative changes in the plasmatic levels of tissue-type plasminogen activator and its fast-acting inhibitor. Relationship to deep vein thrombosis and the influence of prophylaxis. Thromb. Haemost. 54:713-716.Google Scholar
  23. 23.
    Richardson, D. L., D. S. Pepper, and A. B. Kay. 1976. Chemotaxis for human monocytes by fibrinogen-derived peptides. Brit. J. Haematol. 32:507-513.Google Scholar
  24. 24.
    Pardes, J. B., H. Takagi, T. A. Martin, M. S. Ochoa, and V. Falanga. 1995. Decreased levels of α1(I) procollagen mRNA in dermal fibroblasts grown on fibrin gels and in response to fibrinopeptide B. J. Cell. Physiol. 162:9-14.Google Scholar
  25. 25.
    Russell, R. G. G. 1976. Metabolism of inorganic pyrophosphate (PPi). Arch. Rheum. 19:465-478.Google Scholar
  26. 26.
    Fleisch, H., and W. F. Neuman. 1961. Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am. J. Physiol. 200:1296-1300.Google Scholar
  27. 27.
    Russell, R. G. G., and H. Fleisch. 1970. Inorganic pyrophosphate and pyrophosphatases in calcification and calcium homeostasis. Clin. Orthopaed. Rel. Res. 69:101-117.Google Scholar
  28. 28.
    Russell, R. G. G., S. Bisaz, A. Donath, D. B. Morgan, and H. Fleisch. 1971. Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and in other disorders of bone. J. Clin. Invest. 50:961-969.Google Scholar
  29. 29.
    Wuthier, R. E., S. Bisaz, R. G. G. Russell, and H. Fleisch. 1972. Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcification in vivo. Calc. Tiss. Res. 10:198-206.Google Scholar
  30. 30.
    Anderson, H. C. 1988. Mechanisms of pathologic calcification. Rheum. Dis. Clin. No. Amer. 14:302-315.Google Scholar
  31. 31.
    Joseph, J., and H. McGrath. 1995. Gout or “pseudogout”: How to differentiate crystal-induced arthropathies. Geriatrics. 50:33-39.Google Scholar
  32. 32.
    Shinozaki, T., and K. P. H. Pritzker. 1996. Regulation of alkaline phosphatase: implication for calcium pyrophosphate dihydrate crystal dissolution and other alkaline phosphatase functions. J. Rheumatol. 23:677-683.Google Scholar
  33. 33.
    Schumaker, H. R., Jr. 1995. Synovial inflammation, crystals, and osteoarthritis. J. Rheumatol. (suppl. 43)22:101-103.Google Scholar
  34. 34.
    Halverson, P. B. 1996. Calcium crystal-associated diseases. Curr. Opin. Rheumatol. 8:259-261.Google Scholar
  35. 35.
    Makowski, G. S., and M. L. Ramsby. 1996. Calibrating gelatin zymograms with human gelatinase standards. Anal. Biochem. 236:353-356.Google Scholar
  36. 36.
    Markert, M., P. C. Andrews, and B. M. Babior. 1984. Measurement of O2 production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Meth. Enzymol. 105:358-365.Google Scholar
  37. 37.
    Vartio, T., and M. Baumann. 1989. Human gelatinase/type IV procollagenase is a regular plasma component. FEBS Lett. 255:285-289.Google Scholar
  38. 38.
    Makowski, G. S., and M. L. Ramsby. 1998. Identification and partial characterization of three calcium-and zinc-independent gelatinases constitutively present in human circulation. Biochem. Molec. Biol. Intl. 46:1043-1053.Google Scholar
  39. 39.
    Bowers, G. N., Jr., and R. B. McComb. 1966. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin. Chem. 12:70-89.Google Scholar
  40. 40.
    Fujita, Y., I. Mori, and S. Kitano. 1983. Color reaction between pyrogallol red-molybdenum (VI) complex and protein. Bunsaki Kagaku. 32:E379-E386.Google Scholar
  41. 41.
    Clauss, A. 1957. Rapid physiological coagulation method for the determination of fibrinogen. Acta. Haematol. 17:237-246.Google Scholar
  42. 42.
    Regoeczi, E. 1968. Occlusion of plasma proteins by human fibrin: studies using trace-labelled proteins. Br. J. Haematol. 14:279-290.Google Scholar
  43. 43.
    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.Google Scholar
  44. 44.
    Heussen, C., and E. B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102:196-202.Google Scholar
  45. 45.
    Makowski, G. S., and M. L. Ramsby. 1993. pH modification to enhance the molecular seiving properties of sodium dodecyl sulfate-10% polyacrylamide gels. Anal. Biochem. 212:283-285.Google Scholar
  46. 46.
    Fujisawa, R., Y. Wada, Y. Nodaska, and Y. Kuboki. 1996. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochim. Biophys. Acta. 1292:53-60.Google Scholar
  47. 47.
    Brown, L. F., A. M. Dvorak, and H. F. Dvorak. 1989. Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and many other types of disease. Am. Rev. Respir. Dis. 140:1104-1107.Google Scholar
  48. 48.
    Cliffton, D. E., and D. Agostino. 1965. The effects of fibrin formation and alterations in the clotting mechanism on the development of metastases. Vasc. Dis. 2:43-52.Google Scholar
  49. 49.
    Weitz, J. I., B. Leslie, and M. Hudoba. 1998. Thrombin binds to soluble fibrin degradation products where it is protected from inhibition by heparin-antithrombin but susceptible to inactivation by antithrombin-independent inhibitors. Circulation 97:544-552.Google Scholar
  50. 50.
    Mosesson, M. W., K. R. Siebenlist, M. Voskuilen, and W. Nieuwenhuizen. 1998. Evaluation of factors contributing to fibrin-dependent plasminogen activation. Thromb. Haemost. 79:796-801.Google Scholar
  51. 51.
    Werle, E., L. Hao, C. Hasslacher, and W. Fiehn. 1997. Western blotting of NC1 type IV collagen fragments in human plasma. Eur. J. Clin. Invest. 27:579-588.Google Scholar
  52. 52.
    Ezov, N., A. Nimrod, B. Parizada, M. M. Werber, A. Goldlust, L. A. Greenstein, T. Vogel, N. Drizlich, A. Levanon, S. Reich, M. Gorecki, and A. Panet. 1997. Recombinant polypeptides derived from the fibrin binding domain of fibronectin are potential agents for the imaging of blood clots. Thromb. Haemost. 77:796-803.Google Scholar
  53. 53.
    Corbett, S. A., L. Lee, C. L. Wilson, and J. E. Schwarzbauer. 1997. Covalent cross-linking of fibronectin to fibrin is required for maximal cell adhesion to a fibronectin-fibrin matrix. J. Biol. Chem. 272:24999-25005.Google Scholar
  54. 54.
    Bu, C. H., and T. Pourmotabbed. 1996. Mechanism of Ca2+-dependent activity of human neutrophil gelatinase B. J. Biol. Chem. 271:14308-14315.Google Scholar
  55. 55.
    Okada, Y., K. Naka, K. Kawamura, T. Matsumoto, I. Nakanishi, N. Fujimoto, H. Sato, and M. Seiki. 1995. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab. Invest. 72:311-322.Google Scholar
  56. 56.
    Trocme, C., P. Gaudin, S. Berthier, C. Barro, P. Zaoui, and F. Morel. 1998. Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9. J. Biol. Chem. 273:20677-20684.Google Scholar
  57. 57.
    Freemont, A. J., V. Hampson, R. Tilman, P. Goupille, Y. Taiwo, and J. A. Hoyland. 1997. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56:542-549.Google Scholar
  58. 58.
    McCarthy, G. M., A. M. Marcius, P. A. Christopherson, L. M. Ryan, and T. Pourmotabbed. 1998. Basic calcium phosphate crystals induce synthesis and secretion of 92 kDa gelatinase (gelatinase B/matrix metalloproteinase 9) in human fibroblasts. Ann. Rheum. Dis. 57:56-60.Google Scholar
  59. 59.
    Qian, X., T. N. Wand, V. L. Rothman, R. F. Nicosia, and G. P. Tuszynski. 1997. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp. Cell Res. 235:403-412.Google Scholar
  60. 60.
    Ramsby, M. L., and D. L. Kreutzer. 1993. Fibrin induction of tissue plasminogen activator in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34:3207-3219.Google Scholar
  61. 61.
    Ramsby, M. L., and D. L. Kreutzer. 1993. Fibrin induction of thrombospondin in corneal endothelial cell in vitro. Invest. Ophthalmol. Vis. Sci. 34:165-174.Google Scholar
  62. 62.
    Ramsby, M. L., and D. L. Kreutzer. 1994. Fibrin induction of interleukin-8 (IL-8) in corneal endothelial cell in vitro. Invest. Ophthalmol. Vis. Sci. 35:3980-3990.Google Scholar
  63. 63.
    Tahery, M. M., and D. A. Lee. 1989. Review: pharmacologic control of wound healing in glaucoma filtration surgery. J. Ocul. Pharmacol. 5:155-179.Google Scholar
  64. 64.
    Chung, S. I., S. Y. Lee, R. Uchino, and F. Carmassi. 1996. Factors that control extravascular fibrinolysis. Semin. Thromb. Hemost. 22:479-488.Google Scholar
  65. 65.
    Reddi, A. H., and W. A. Anderson. 1976. Collagenous bone matrix-induced endochondral ossification and hemopoiesis. J. Cell Biol. 69:557-572.Google Scholar
  66. 66.
    Cardinali, M., R. Uchino, S. I. Chung. 1990. Interaction of fibrinogen with murine melanoma cells: covalent association with cell membranes and protection against recognition by lymophine-activated killer cells. Cancer Res. 50:8010-8016.Google Scholar
  67. 67.
    Fesus, L., and K. Laki. 1976. On coupling bovine fibrinogen to the surface of malignant murine plasma cells by means of transglutaminase. Biochem. Biophys. Res. Comm. 72:131-137.Google Scholar
  68. 68.
    Termine, J. D., and A. S. Posner. 1979. Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch. Biochem. Biophys. 140:307-317.Google Scholar
  69. 69.
    Wuthier, R. E., S. Bisaz, R. G. G. Russell, and H. Fleisch. 1972. Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcification in vivo. Calc. Tiss. Res. 10:198-206.Google Scholar
  70. 70.
    Boskey, A. L. 1997. Amorphous calcium phosphate: the contention of bone. J. Dent. Res. 76:1433-1436.Google Scholar
  71. 71.
    Fleisch, H. 1995. Bone and mineral metabolism. In: Bisphosphonates in Bone Disease from the Laboratory to the Patient, H. Fleisch, ed. New York: Parthenon Publications: pp. 11-31.Google Scholar
  72. 72.
    Ng, K. W., E. Ramos, L. Donnan, and D. M. Findlay, 1997. Bone biology. Balliere's Clin. Endocrinol. Metab. 11:1-22.Google Scholar
  73. 73.
    Mori, S., R. Harruff, W. Ambrosius, and D. B. Burr. 1997. Trabecular bone volume and microdamage in the femoral heads of women with and without femoral neck fractures. Bone 21:521-526.Google Scholar
  74. 74.
    Wu, L. N. Y., Y. Ishikawa, G. R. Sauer, B. R. Genge, F. Mwale, H. Mishima, and R. E. Wuthier. 1995. Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: evidence for cellular processing of Ca2+ and Pi prior to mineralization. J. Cell. Biochem. 57:218-237.Google Scholar
  75. 75.
    Rodan, G. A., and H. A. Fleisch. 1996. Bisphosphonates: mechanisms of action. J. Clin. Invest. 97:2692-2696.Google Scholar
  76. 76.
    Fleisch, H. 1991. Bisphosphonates: pharmacology and use in the treatment of tumor-induced hypercalcemia and metastatic bone disease. Drugs 42:919-944.Google Scholar
  77. 77.
    Rogers, M. J., D. J. Watts, and R. G. G. Russell. 1997. Overview of bisphosphonates. Cancer 80:1652-1660.Google Scholar
  78. 78.
    Katayama, Y., S. Celic, N. Nagata, T. J. Martin, and D. M. Findlay. 1997. Nonenzymatic glycation of type I collagen modifies interaction with UMR 201-10B preosteoblastic cells. Bone 21:237-242.Google Scholar
  79. 79.
    Ryan, L. M., and D. J. MC CARTY. 1995. Understanding inorganic pyrophosphate metabolism: toward prevention of calcium pyrophosphate dihydrate crystal deposition. Ann. Rheum. Dis. 54:939-941.Google Scholar
  80. 80.
    Rull, M. 1997. Calcium crystal-associated diseases and miscellaneous crystals. Curr. Opin. Rheumatol. 9:274-279.Google Scholar
  81. 81.
    Steinbach, L. S., and D. Resnick. 1996. Calcium pyrophosphate dihydrate crystal deposition disease revisited. Radiology 200:1-9.Google Scholar
  82. 82.
    Rosenthal, A. K. 1998. Calcium crystal-associated arthritides. Curr. Opin. Rheumatol. 10:273-277.Google Scholar
  83. 83.
    Doherty, M., and P. A. Dieppe. 1981. Acute pseudogout: “crystal shedding” or acute crystallization? Arth. Rheum. 24:954-957.Google Scholar
  84. 84.
    Cheung, H. S., and D. J. M C CARTY. 1988. Mechanisms of connective tissue damage by crystals containing calcium. Rheum. Dis. Clin. No. Amer. 14:365-376.Google Scholar
  85. 85.
    Ryan, L. M., J. W. Rachow, and D. J. M C Carty. 1991. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate. J. Rheumatol. 18:716-720.Google Scholar
  86. 86.
    Moscatelli, D., and D. B. Rifkin. 1988. Membrane and matrix localization of proteinases: a common theme in tumor cell invasion and angiogenesis. Biochim. Biophys. Acta. 948:67-85.Google Scholar
  87. 87.
    Monsky, W. L., T. Kelly, C. Y. Lin, Y. Yeh, W. G. Stetler-Stevenson, S. C. Mueller, and W. T. Chen. 1993. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53:3159-3164.Google Scholar
  88. 88.
    Merlini, G., G. A. Parrinello, L. Piccinini, F. Crema, M. L. Fiorentini, A. Riccardi, F. Pavesi, F. Novazzi, V. Silingardi, and E. Ascari. 1990. Long-term effects of parenteral dichloromethylene bisphosphonate (CL2MBP) on bone disease of myeloma patients treated with chemotherapy. Hematol. Oncol. 8:23-30.Google Scholar
  89. 89.
    Diel, I. J., E-F. Solomayer, S. D. Costa, C. Gollan, R. Goerner, D. Wallweiner, M. Kaufmann, and G. Bastert. Reduction in new metastases in breast cancer with adjuvant clonidine treatment. New Engl. J. Med. 339:357-363.Google Scholar
  90. 90.
    Bundred, N. J., J. Walls, and W. A. Ratcliffe. 1996. Parathyroid hormone-related protein, bone metastases and hypercalcemia of malignancy. Ann. Royal Coll. Surg. Engl. 78:354-358.Google Scholar
  91. 91.
    Yoshida, K., W. Nakamura, K. Hirano, T. Tsukamoto, and M. Tatematsu. 1998. Expression of sucrase and intestinal-type alkaline phosphatase in colorectal carcinomas in rats treated with methylazomethanol acetate. J. Cancer Re. Clin. Oncol. 124:677-682.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Gregory S. Makowski
    • 1
  • Melinda L. Ramsby
    • 2
  1. 1.Department of Laboratory MedicineUniversity of Connecticut Health CenterFarmington
  2. 2.Department of Medicine, School of MedicineUniversity of Connecticut Health CenterFarmington

Personalised recommendations