Euphytica

, Volume 127, Issue 2, pp 209–218

Novel male-specific molecular markers (MADC5, MADC6) in hemp

  • Ottó Törjék
  • Nándor Bucherna
  • Erzsébet Kiss
  • Hajnalka Homoki
  • Zsuzsanna Finta-Korpelová
  • Iván Bócsa
  • István Nagy
  • László E. Heszky
Article

Abstract

Decamer RAPD primers were tested on dioecious and monoecious hemp cultivars to identify sex-specific molecular markers. Two primers (OPD05 and UBC354) generated specific bands in male plants. These two DNA fragments were isolated, cloned and sequenced. Both markers proved to be unique, since no sequence with significant homology to OPD05961 and UBC354151 markers were found in databases. These markers were named MADC3 (OPD05961) and MADC4 (UBC354151) (Male-Associated DNA from Cannabis sativa). The markers were converted into sequence-characterized amplified region (SCAR) markers. The SCAR markers correlated with the sex of the segregating F2 population and proved the tight linkage to the male phenotype. Results of F2 plant population analysis suggest these markers are to be linked to the Y chromosome.

Cannabis sativa RAPD SCAR sex identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrom-Rapaport, C., M. Lascoux, Y.C. Wang, G. Roberts & G.A. Tuskan, 1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L). J Heredity 89: 44–49.CrossRefGoogle Scholar
  2. Benito, C., A.M. Figueras, C. Zaragoza, F.J. Gallego & A. de la Pena, 1993. Rapid identification of Triticeae genotypes from single seeds using the polymerase chain reaction. Plant Mol Biol 21: 181–183.PubMedCrossRefGoogle Scholar
  3. Bócsa, I., 1998. Genetic improvement: conventional approaches. In: P. Ranalli (Ed.), Advances in Hemp Research, pp. 153–184. Food Products press, An Imprint of The Haworth Press, Inc. New York.Google Scholar
  4. Bucherna, N., F.T. Okkels & G. Palmgren, 1999. Developmental timing of transgene expression is dosage dependent. Physiol Plant 107: 90–97.CrossRefGoogle Scholar
  5. Clarke, R.K., 1997. Hanf: Botanik, Anbau Vermehrung und Züchtung. AT Verlag, Aarau, Schweiz.Google Scholar
  6. Di Stilio, V.E., R.V. Kesseli & D.L. Mulcahy, 1998. A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica. Genetics 149: 2057–2062.PubMedGoogle Scholar
  7. Duran, R. & B. Duran, 1990. Sexual determination and differentiation. Crit Rev Plant Sci 9: 295–316.CrossRefGoogle Scholar
  8. Faeti, V., G. Mandolino & P. Ranalli, 1996. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed 115: 367–370.CrossRefGoogle Scholar
  9. Flachowsky, H., E. Schumann, W.E. Weber & A. Peil, 2001. Application of AFLP for the detection of sex-specific markers in hemp. Plant Breed 120: 305–309.CrossRefGoogle Scholar
  10. Harvey, C.F., G.P. Gill, L.G. Fraser & M.A. McNeilage, 1997. Sex determination in Actinidia. 1. Sex-linked markers and progeny sex ratio in diploid A. chinensis. Sex Plant Reprod 10: 149–154.CrossRefGoogle Scholar
  11. Hirata, K., 1924. Cytological basis of the sex determination in Cannabis sativa L. Jap J Genet 4: 198–201.Google Scholar
  12. Hormaza, J.L., L. Dollo & V.S. Polito, 1994. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89: 9–13.CrossRefGoogle Scholar
  13. Jagadish, V., J. Robertson & A. Gibbs, 1996. RAPD analysis distinguishes Cannabis sativa samples from different sources. For Sci Int 79: 113–121.Google Scholar
  14. Lewis, K.R. & B. John, 1968. The chromosomal basis of sex determination. Int Rev Cytol 23: 277–379.PubMedGoogle Scholar
  15. Mandolino, G., A. Carboni, S. Forapani, V. Faeti & P. Ranalli, 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L). Theor Appl Gen 98: 86–92.CrossRefGoogle Scholar
  16. Mandolino, G., A. Carboni, S. Forapani & P. Ranalli, 1998. DNA markers associated with sex phenotype in hemp (Cannabis sativa L). Proc of ‘Blast Fibrous Plants Today and Tomorrow’ St. Petersburg, September 28-30: 197–201, Institute of Natural Fibres (Poland), special edition, 1998/2.Google Scholar
  17. Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.PubMedCrossRefGoogle Scholar
  18. Migal, N.D., 1986. Genetic determination of sex in hemp. II. Sexual mutations and the general theory of genotypic control of sex in hemp. Genetika USSR 22: 829–837.Google Scholar
  19. Mulcahy, D.L., N.F. Weeden, R. Kesseli & S.B. Carroll, 1992. DNA probes for the Y-chromosome of Silene latifolia, a dioecious angiosperm. Sex Plant Reprod 5: 86–88.CrossRefGoogle Scholar
  20. Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR based markers linked to downy mildew resistance gene in lettuce. Theor Appl Genet 85: 985–993.CrossRefGoogle Scholar
  21. Parasnis, A.S., V.S. Gupta, S.A. Tamhankar & P.K. Ranjekar, 2000. A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6: 337–344.CrossRefGoogle Scholar
  22. Parker, J.S. & M.S. Clark, 1991. Dosage sex-chromosome systems in plants. Plant Sci 80: 79–92.CrossRefGoogle Scholar
  23. Polley, A., E. Seigner & M.W. Ganal, 1997. Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 40: 357–361.PubMedGoogle Scholar
  24. Reamon-Büttner, S.M., J. Schondelmaier & C. Jung, 1998. AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breed 4: 91–98.CrossRefGoogle Scholar
  25. Sakamoto, K., Y. Akiyama, K. Fukui, H. Kamada & S. Satoh, 1998. Characterization, genom sizes and morfology of sex chromosomes in hemp (Cannabis sativa L). Cytologia 63: 459–464.Google Scholar
  26. Sakamoto, K., N. Ohmido, K. Fukui, H. Kamada & S. Satoh, 2000. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44: 723–732.PubMedCrossRefGoogle Scholar
  27. Sakamoto, K., K. Shimomura, Y. Komeda, H. Kamada & S. Satoh, 1995. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L. Plant Cell Physiol 36: 1549–1554.PubMedGoogle Scholar
  28. Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  29. Warmke, H.E. & H. Davidson, 1944. Poliploid investigation. Yearbook of the Carnegie Institution of Washington 43: 135–139.Google Scholar
  30. Westergaard, M., 1958. The mechanism of sex determination in dioecious flowering plants. Adv Genet 9: 217–281.PubMedCrossRefGoogle Scholar
  31. Yamada, I., 1943. The sex-chromosome of Cannabis sativa L. Seiken Ziho 2: 64–68.Google Scholar
  32. Yampolsky, C. & H., Yampolsky, 1922. Distribution of sex forms in the phanerogamic flora. Bibl Genet 3: 1–62.Google Scholar
  33. Zhang, Y.H., V.S. Di Stilio, F. Rehman, A. Avery, D.L. Mulcahy & R.V. Kesseli, 1998. Y chromosome specific markers and the evolution of dioecy in the genus Silene. Genome 41: 141–147.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ottó Törjék
    • 1
  • Nándor Bucherna
    • 1
  • Erzsébet Kiss
    • 1
  • Hajnalka Homoki
    • 1
  • Zsuzsanna Finta-Korpelová
    • 2
  • Iván Bócsa
    • 2
  • István Nagy
    • 3
  • László E. Heszky
    • 1
  1. 1.Dept. of Genetics & Plant BreedingSt. István UniversityGödöllõHungary
  2. 2.Agricultural Research InstituteSt. István UniversityKompoltHungary
  3. 3.Agricultural Biotechnology CenterGödöllõHungary

Personalised recommendations