Advertisement

Russian Journal of Plant Physiology

, Volume 49, Issue 5, pp 677–684 | Cite as

Plasmodesmata as a Modulator of Osmotic Water Fluxes in Plants

  • A. V. Anisimov
  • A. G. Egorov
Article

Abstract

Solutions to some key problems in the relationships between the structure and functions of plasmodesmata, a component of the plant intercellular communication system, are proposed on the basis of the theory of osmotic flows through porous membranes. The theory accounts for structural characteristics of plasmodesmata, such as their dimension, shape, and length. It considers the steric and adsorption potentials of the solution–cell wall interaction and estimates water and solute (e.g., sucrose) flows under the sustained difference of osmotic pressures at the ends of plasmodesmata. The theory predicts that the water flow through plasmodesmata increases with the widening of the neck constriction and reaches its peak when its size is equal to the diameter of the solute molecule. The water-flow direction was found to depend on the opening of the annulus in neck constrictions at negative adsorption potentials of the plasmodesmata channel walls. Taking into account the presence of sphincters in the neck constrictions, our data suggest the role of plasmodesmata as a modulator of osmotic water fluxes in plants.

intercellular transport structure and functions of plasmodesmata interaction potential osmosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gunning, B.E.S., Introduction to Plasmodesmata, Inter-cellular Communications in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.W., Eds., Heidelberg: Springer-Verlag, 1976, pp. 1-14.Google Scholar
  2. 2.
    Gunning, B.E.S., The Role of Plasmodesmata in Short Distance Transport to and from Phloem, Intercellular Communication in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.W., Eds., Heidelberg: Springer-Verlag, 1976, pp. 203-228.Google Scholar
  3. 3.
    Gunning, B.E.S. and Robards, A.W., Plasmodesmata and Symplastic Transport, Transport and Transfer Processes in Plants, Wardlow, I.F. and Passioura, J.B., Eds., New York: Academic, 1976, pp. 15-43.Google Scholar
  4. 4.
    Robards, A.W., Plasmodesmata in Higher Plants, Inter-cellular Communication in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.S., Eds., Heidelberg: Springer-Verlag, 1976, pp. 15-57.Google Scholar
  5. 5.
    Gamalei, Yu.V., Plasmodesmata as Intercellular Plant Connections, Fiziol. Rast. (Moscow), 1985, vol. 32, pp. 176-184 (Sov. PLant Physiol., Engl. Transl.).Google Scholar
  6. 6.
    Beebe, D.U. and Turgeon, R., Current Perspectives on Plasmodesmata: Structure and Function, Physiol. Plant., 1991, vol. 83, pp. 194-199.Google Scholar
  7. 7.
    Meiners, S., Baron-Epel, O., and Schindler, M., Intercellular Communications—Filling in the Gaps, Plant Physiol., 1988, vol. 58, pp. 791-793.Google Scholar
  8. 8.
    Arisz, W.H., Intercellular Polar Transport and the Role of Plasmodesmata in Coleoptiles and Vallisneria Leaves, Acta Bot. Neerl., 1969, vol. 18, pp. 14-38.Google Scholar
  9. 9.
    Kursanov, A.L., Transport assimilyatov v rastenii, Moscow: Nauka, 1976. Translated under the title Assimilate Transport in Plants, Amsterdam: Elsevier, 1984.Google Scholar
  10. 10.
    Spanswick, R.M., Electrical Coupling between Cells in Higher Plants: A Direct Demonstration of Intercellular Communication, Planta, 1972, vol. 102, pp. 215-227.Google Scholar
  11. 11.
    Spanswick, R.M., Symplasmic Transport in Tissues, Encycl. Plant Physiol. New Ser., vol. 2, Transport in Plants, Luttge, U. and Pitman, M.G., Eds., Berlin: Springer-Verlag, 1976, pp. 35-53.Google Scholar
  12. 12.
    Lyalin, O.O., Ktitorova, I.N., Kazaryan, A.A., and Akhmedov, N.S., Electrical Communication between Guard and Accessory Cells, Fiziol. Rast. (Moscow), 1979, vol. 26, pp. 548-553 (Sov. PLant Physiol., Engl. Transl.).Google Scholar
  13. 13.
    Goldsmith, M., The Transport of Auxin, Annu. Rev. Plant Physiol., 1966, vol. 19, pp. 347-360.Google Scholar
  14. 14.
    Luttge, U., Stofftransport der Pflanzen, Berlin: Springer-Verlag, 1973.Google Scholar
  15. 15.
    Crafts, A.S., A Technique for Demonstrating Plasmodesmata, Stain Technol., 1931, vol. 6, pp. 127-128.Google Scholar
  16. 16.
    Evert, R.F., Eschrich, W., and Heyser, W., Distribution and Structure of Plasmodesmata in Mesophyll and Bundle-Sheath Cells of Zea mays L., Planta, 1977, vol. 136, pp. 77-89.Google Scholar
  17. 17.
    Tucker, E.B., Translocation in the Staminal Hairs of Setcreasea purpurea: 1. A Study of Cell Ultrastructure and Cell-to-Cell Passage of Molecular Probes, Protoplasma, 1982, vol. 113, pp. 193-201.Google Scholar
  18. 18.
    Goodwin, P.B., Molecular Size Limit for Movement in the Symplast of Elodea Leaf, Planta, 1983, vol. 157, pp. 124-130.Google Scholar
  19. 19.
    Terry, B.R. and Robards, A.W., Hydrodynamic Radius Alone Governs the Mobility of Molecules through Plasmodesmata, Planta, 1987, vol. 171, pp. 145-157.Google Scholar
  20. 20.
    Arisz, W.H., Symplasmatischer Saltztransport in Vallisneria, Protoplasma, 1960, vol. 52, pp. 309-343.Google Scholar
  21. 21.
    Osmond, C.B., Metabolite Transport in C4 Photosynthesis, Aust. J. Biol., 1971, vol. 24, pp. 159-163.Google Scholar
  22. 22.
    Olesen, P., Plasmodesmata between Mesophyll and Bundle-Sheath Cells in Relation to the Exchange of C4-Acids, Planta, 1975, vol. 123, pp. 199-202.Google Scholar
  23. 23.
    Newmann, B.E.I., Water Movement through Root Systems, Phil. Trans. R. Soc. London, A, 1976, vol. 273, pp. 463-478.Google Scholar
  24. 24.
    Anisimov, A.V., Evarestov, A.S., Samuilova, I.F., and Gusev, N.A., Application of the NMR Method for Evaluation of Intercellular Symplastic Water Transport, Dokl. Akad. Nauk SSSR, 1983, vol. 271, pp. 1246-1249.Google Scholar
  25. 25.
    Anisimov, A.V. and Ratkovich, S., Transport vody v rasteniyakh. Issledovanie impul'snym YaMR (Water Transport in Plants. Application of Impulse NMR Technique), Moscow: Nauka, 1992.Google Scholar
  26. 26.
    Anisimov, A.V., The Symplast Radial-Axial Water Transport in Plant: A NMR Approach, Water Transport in Plants under Climatic Stress, Borghetti, M. et al., Eds., Cambridge: Cambridge Univ., 1993, pp. 140-147.Google Scholar
  27. 27.
    Arisz, W.H., Transport of Chloride in the “Symplasm” of Vallisneria Leaves, Nature, 1954, vol. 174, pp. 233-235.Google Scholar
  28. 28.
    Arisz, W.H., Significance of the Symplasm Theory for Transport across the Root, Protoplasma, 1956, vol. 46, pp. 1-62.Google Scholar
  29. 29.
    Tyree, M.T., The Symplast Concept: A General Theory of Symplastic Transport According to the Thermodynamics of Irreversible Processes, J. Theor. Biol., 1970, vol. 26, pp. 181-214.Google Scholar
  30. 30.
    Hull, R., The Movement of Viruses in Plants, Annu. Rev. Phytopathol., 1989, vol. 27, pp. 213-240.Google Scholar
  31. 31.
    Derric, P.M., Barker, H., and Opaka, K.J., Effect of Virus Penetration on Symplasmic Transport of Fluorescent Tracers in Nicotiana clevelandii Leaf Epidermis, Planta, 1990, vol. 181, pp. 555-559.Google Scholar
  32. 32.
    Lucas, W.J., Wolf, S., Deom, C.M., Kishore, G.M., and Beachy, R.N., Plasmodesmata—Virus Interaction, Parallels in Cell-to-Cell Junctions in Plants and Animals, Robards, A.W. et al., Eds., Berlin: Springer-Verlag, 1990, pp. 261-274.Google Scholar
  33. 33.
    Wolf, S., Deom, C.M., Beachy, R.N., and Lucas, W.J., Movement Protein of Tobacco Mosaic Virus Modifies Plasmodesmata Size Exclusion Limit, Science, 1989, vol. 246, pp. 377-379.Google Scholar
  34. 34.
    Citovsky, V., Knorr, D., Schuster, G., and Zambrisky, P., The P30 Movement Protein of Tobacco Mosaic Virus in a Single-Strand Nucleic Acids Binding Protein, Cell, 1990, vol. 60, pp. 637-647.Google Scholar
  35. 35.
    López-Sáez, J.F., Giménez-Martin, G., and Risueño, M.C., Fine Structure of the Plasmodesmata, Protoplasma, 1966, vol. 61, pp. 81-84.Google Scholar
  36. 36.
    Evert, R.F., Eschrich, W., and Heyser, W., Distribution and Structure of Plasmodesmata in Mesophyll and Bundle-Sheath Cells of Zea mays L., Planta, 1977, vol. 136, pp. 77-89.Google Scholar
  37. 37.
    Overall, R.L., Wolfe, J., and Gunning, B.E.S., Intercellular Communication in Azolla Roots: 1. Ultrastructure of Plasmodesmata, Protoplasma, 1982, vol. 111, pp. 134-150.Google Scholar
  38. 38.
    Gunning, B.E.S. and Overall, R.L., Plasmodesmata and Cell-to-Cell Transport in Plants, BioScience, 1983, vol. 33, pp. 260-265.Google Scholar
  39. 39.
    Thompson, W.W. and Platt-Aloia, K., The Ultrastructure of the Plasmodesmata of the Salt Glands of Tamarix as Revealed by Transmission and Freeze-Fracture Electron Microscopy, Protoplasma, 1985, vol. 125, pp. 13-23.Google Scholar
  40. 40.
    Gamalei, Yu.V., Assimilate Export under Natural and Experimental Conditions, Fiziol. Rast. (Moscow), 1996, vol. 43, pp. 328-343 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  41. 41.
    Gamalei, Yu.V., Photosynthesis and Export of Photoas-similates: Development of the Transport System and Source-Sink Relations, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 614-631 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  42. 42.
    Ding, B., Turgeon, R., and Parthasarathy, M.V., Plasmodesmatal Substructure in Cryofixed Developing Tobacco Leaf Tissue, Recent Advances in Phloem Transport and Assimilate Compartmentation, Bonnemian, J.L. et al., Eds., Paris: Ouest Editions, 1991, pp. 317-323.Google Scholar
  43. 43.
    Olesen, P., The Neck Constriction in Plasmodesmata: Evidence for a Peripheral Sphincter-Like Structure Revealed by Fixation with Tannic Acid, Planta, 1979, vol. 144, pp. 349-358.Google Scholar
  44. 44.
    Olesen, P. and Robards, A.W., The Neck Regions of Plasmodesmata: General Architecture and Some Functional Aspects, Parallels in Cell-to-Cell Junctions in Plants and Animals, Robards, A.W. et al., Eds., Berlin: Springer-Verlag, 1990, pp. 145-170.Google Scholar
  45. 45.
    Robinson-Beers, K. and Evert, R.F., Structure and Development of Plasmodesmata at the Mesophyll Bundle-Sheath Cell Interface of Sugarcane Leaves, Recent Advances in Phloem Transport and Assimilate Compart-mentation, Bonnemian, J.L. et al., Eds., Paris: Ouest Editions, 1991, pp. 116-121.Google Scholar
  46. 46.
    Tucker, E.B., Inositol Bisphosphate and Inositol Tri-phosphate Inhibit Cell-to-Cell Passage of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea, Planta, 1988, vol. 174, pp. 358-363.Google Scholar
  47. 47.
    Tucker, E.B., Calcium-Loaded 1,2-bis(2-Aminophenoxy) Ethane—N, N, N2, N3—Tetraacetic Acid Blocks Cell-to-Cell Diffusion of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea, Planta, 1990, vol. 182, pp. 34-38.Google Scholar
  48. 48.
    Anderson, W.P., Physico-Chemical Assessment of Plasmodesmatal Transport, Intercellular Communication in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.W., Eds., Heidelberg: Springer-Verlag, 1976, pp. 5-120.Google Scholar
  49. 49.
    Anderson, J.L. and Malone, D.M., Mechanism of Osmotic Flow in Porous Membranes, Biophys. J., 1974, vol. 14, pp. 957-982.Google Scholar
  50. 50.
    Kedem, O. and Katchalsky, A., Permeability of Composite Membranes: Part 1, Trans. Faraday Soc., 1963, vol. 59, pp. 1931-1940.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. V. Anisimov
    • 1
  • A. G. Egorov
    • 2
  1. 1.Kazan Institute of Biochemistry and Biophysics, Kazan Research CenterRussian Academy of SciencesKazanRussia
  2. 2.Chebotarev Kazan Institute of Mathematics and MechanicsKazanRussia

Personalised recommendations