Journal of Solution Chemistry

, Volume 31, Issue 6, pp 433–453 | Cite as

Reductive Dissolution of PuO2(am): The Effect of Fe(II) and Hydroquinone

  • Dhanpat Rai
  • Yuri A. Gorby
  • Jim K. Fredrickson
  • Dean A. Moore
  • Mikazu Yui


PuO2(am) solubility was investigated as a function of time, for pH from 0.5 to 11, and in the presence of 0.001 M FeCl2 or 0.00052 M hydroquinone to determine the effect of environmentally important reducing agents on PuO2(am) solubilization under geological conditions. Equilibrium was reached in <4 days. The observed PuO2(am) solubilities were many orders of magnitude higher than the Pu(IV) concentrations predicted from thermodynamic data. Spectroscopic, solvent extraction, and thermodynamic analyses of data showed that Pu(III) was the dominant aqueous oxidation state. The experimental pH, pe, and Pu(III) concentrations from both the Fe(II) and hydroquinone systems provided a log K0 value of 15.5 ± 0.7 for [PuO2(am) + 4H+ + e ⇌ Pu3+ + 2H2O]. The data show that reduction reactions involving Fe(II) and hydroquinone are relatively rapid and that reductive dissolution of PuO2(am), hitherto ignored, may play an important role in controlling Pu behavior under reducing environmental conditions.

Solubility solubility product PuO2(am) Pu(III) Pu(IV) redox reactions thermodynamics ion–interaction parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Riley, J. M. Zachara, and F. J. Wobber, Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research, DOE/ER-0547T (National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 1992).Google Scholar
  2. 2.
    ORNL, U.S. Spent Nuclear Fuel and Radioactive Waste Inventories, Projections, and Characteristics (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1993).Google Scholar
  3. 3.
    D. M. Nelson and M. B. Lovett, Nature (London) 276, 599(1978).Google Scholar
  4. 4.
    D. M. Nelson, A. E. Carey, and V. T. Bowen, Earth Planet Sci. Lett. 68, 422(1984).Google Scholar
  5. 5.
    E. A. Bondietti and J. R. Trabalka, Radiochem Radioanal. Lett. 42, 169(1980).Google Scholar
  6. 6.
    R. Fukai, M. Yamoto, M. Thein, and H. Bilinski, Geochemistry 21, 51(1987).Google Scholar
  7. 7.
    G. R. Choppin, R. A. Roberts, and J. W. Morse, in Organic Marine Geochemistry, M. L. Sohn, ed. (American Chemical Society Symposium Series, 1986), pp. 382-388.Google Scholar
  8. 8.
    G. R. Choppin and B. E. Stout, Sci. Total Environ. 83, 203(1989).Google Scholar
  9. 9.
    D. Rai, R. J. Serne, and J. L. Swanson, J. Environ. Qual. 9, 417(1980).Google Scholar
  10. 10.
    D. Rai, Radiochim. Acta 35, 97(1984).Google Scholar
  11. 11.
    D. Rai, D. A. Moore, A. R. Felmy, G. R. Choppin, and R. C. Moore, Radiochim. Acta 89, 491(2001).Google Scholar
  12. 12.
    G. R. Choppin, J. Radioanal. Nucl. Chem. 147, 109(1991).Google Scholar
  13. 13.
    R. J. Lemire, J. Fuger, S. Kastriot, H. Nitsche, W. J. Ullman, P. Potter, P. Vitorge, M. H. Rand, H. Wanner, and J. Rydberg, Chemical Thermodynamics of Neptunium and Plutonium. Chemical Thermodynamics: Vol. 4 (Elsevier Sci., Amsterdam, 2001).Google Scholar
  14. 14.
    R. Knopp, V. Neck, and J. I. Kim, Radiochim. Acta 86, 101(1999).Google Scholar
  15. 15.
    T. F. Rees and J. M. Cleveland, in Environmental Migration of Long-Lived Radionuclides. (International Atomic Energy Agency, Vienna, 1982), pp. 41-52.Google Scholar
  16. 16.
    J. M. Cleveland and T. F. Rees, Science 212, 1506(1981).Google Scholar
  17. 17.
    D. R. Champ and D. E. Robertson, in Speciation of Fission and Activation Products in the Environment, R. A. Bullman and J. R. Cooper, eds. (Elsevier, New York, 1986).Google Scholar
  18. 18.
    L. E. Eary and D. Rai, Amer. J. Sci. 289, 180(1989).Google Scholar
  19. 19.
    D. R. Lovely, Microbiol. Rev. 55, 259(1991).Google Scholar
  20. 20.
    D. R. Lovely, Annu. Rev. Microbiol. 47, 263(1993).Google Scholar
  21. 21.
    K. Nealson and J. M. Saffarini, Annu. Rev. Microbiol 48, 311(1994).Google Scholar
  22. 22.
    D. R. Lovely and E. J. P. Phillips, Appl. Environ. Microbiol. 53, 1536(1987).Google Scholar
  23. 23.
    E. E. Roden and J. M. Zachara, Environ. Sci. Technol. 30, 1618(1996).Google Scholar
  24. 24.
    J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. W. Hinman, and S. Li, Geochim. Cosmochim. Acta 62, 3239(1998).Google Scholar
  25. 25.
    D. R. Lovely, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward, Nature (London) 382, 445(1996).Google Scholar
  26. 26.
    D. R. Lovely, J. L. Fraga, E. L. Blunt-Harris, L. A. Hayes, E. J. P. Phillips, and J. D. Coates, Acta Hydrochim. Hydrobiol. 26, 152(1998).Google Scholar
  27. 27.
    T. W. Newton and H. D. Cowan, J. Phys. Chem. 64, 244(1960).Google Scholar
  28. 28.
    T. W. Newton, J. Inorg. Nucl. Chem. 36, 639(1974).Google Scholar
  29. 29.
    J. K. Foreman and T. D. Smith, J. Chem. Soc. 2, 1752(1957).Google Scholar
  30. 30.
    P. A. Rusin, L. Quintana, J. R. Brainard, B. A. Strietelmeir, C. D. Trait, S. A. Ekberg, P. D. Palmer, T. W. Newton, and D. L. Clark, Environ. Sci. Technol. 28, 1686(1994).Google Scholar
  31. 31.
    I. AlMahamid, K. A. Becraft, N. L. Hakem, R. C. Gatti, and H. Nitsche, Radiochim. Acta 74, 129(1996).Google Scholar
  32. 32.
    K. A. Kraus, Oxidation-Reduction Potentials of Plutonium Couples as a Function of pH. The Transuranium Elements, Vol. 14B (McGraw-Hill, New York, 1949), Chap. 3.16.Google Scholar
  33. 33.
    A. R. Felmy, D. Rai, J. A. Schramke, and J. L. Ryan, Radiochim. Acta 48, 29(1989).Google Scholar
  34. 34.
    J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, M. C. Duff, Y. A. Gorby, S. W. Li, and K. M. Krupka, Geochim. Cosmochim. Acta 64, 3085(2000).Google Scholar
  35. 35.
    D. Rai, R. G. Strickert, D. A. Moore, and J. L. Ryan, Radiochim. Acta 33, 201(1983).Google Scholar
  36. 36.
    D. Rai, A. R. Felmy, and R. W. Fulton, J. Solution Chem. 24, 879(1995).Google Scholar
  37. 37.
    L. A. Curie, Anal. Chem. 40, 586(1968).Google Scholar
  38. 38.
    J. A. Schramke, D. Rai, G. R. Choppin, and R. W. Fulton, J. Radioanal. Nucl. Chem. Articles 130, 333(1989).Google Scholar
  39. 39.
    J. M. Cleveland, The Chemistry of Plutonium (Gordon and Breach, New York, 1970).Google Scholar
  40. 40.
    K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300(1973).Google Scholar
  41. 41.
    K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC Press, Boca Raton, FL, 1991), Chap. 3.Google Scholar
  42. 42.
    A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771(1986).Google Scholar
  43. 43.
    C. W. Davies, Ion Association (Butterworths, London, 1962).Google Scholar
  44. 44.
    D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86, 89(1999).Google Scholar
  45. 45.
    D. Rai, H. Bolton, D. A. Moore, N. J. Hess, and G. R. Choppin, Radiochim. Acta 89, 67(2001).Google Scholar
  46. 46.
    W. M. Clark, Oxidation-Reduction Potentials of Organic Systems (Williams & Wilkins, Baltimore, MD, 1960).Google Scholar
  47. 47.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttal, The NBS Table of Chemical Thermodynamic Properties (J. Phys. Chem. Ref. Data Vol. 11), Suppl. 2 (Amer. Chem. Soc. Amer. Inst. Physics, 1982).Google Scholar
  48. 48.
    S. A. Glantz, Primer of Biostatistics (McGraw-Hill, New York, 1992).Google Scholar
  49. 49.
    C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).Google Scholar
  50. 50.
    A. R. Felmy and D. Rai, J. Solution Chem. 28, 537(1999).Google Scholar
  51. 51.
    R. M. Smith, A. E. Martell, and R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes Database, Version 6.0 for Windows. NIST Standard Reference Database 46 (U.S. Department of Commerce, Gaithersburg, MD, 2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Dhanpat Rai
    • 1
  • Yuri A. Gorby
    • 1
  • Jim K. Fredrickson
    • 1
  • Dean A. Moore
    • 1
  • Mikazu Yui
    • 2
  1. 1.Pacific Northwest National LaboratoryRichland
  2. 2.Japan Nuclear Cycle Development InstituteTokai WorksJapan

Personalised recommendations