On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows

  • Marc Fouchard
  • Elena Lega
  • Christiane Froeschlé
  • Claude Froeschlé

Abstract

It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.

fast Lyapunov indicators periodic orbits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J.M.: 1980, 'Lyapunov characteristic exponents for smooth dynamical systems; a method for computing all of them', Meccanica 15, Part I: Theory, 9-20; Part II: Numerical applications, 21-30.Google Scholar
  2. Froeschlé, C. and Lega, E.: 2000, 'On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool', Celest. Mech. & Dyn. Astr. 78, 167-195.Google Scholar
  3. Lega, E. and Froeschlé, C.: 2001, 'On the relationship between fast Lyapunov indicator and periodic orbits for symplectic mappings', Celest. Mech. & Dyn. Astr. 81, 129-147.Google Scholar
  4. Froeschlé, C.: 1970, 'A numerical study of the stochasticity of dynamical systems with two degrees of freedom', Astron. Astrophys. 9, 15-23.Google Scholar
  5. Froeschlé, C.: 1984, 'The Lyapunov characteristic exponents and applications', J. de Méc. théor. et apl., Numero spécial, 101-132.Google Scholar
  6. Froeschlé, C., Gonczi, R. and Lega, E.: 1997b, 'The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt', Planet. Space Sci. 45, 881-886.Google Scholar
  7. Froeschlé, C., Guzzo, M. and Lega, E.: 2000, 'Graphical evolution of the Arnold's web: from order to chaos', Science 289 (5487), 2108-2110.Google Scholar
  8. Froeschlé, C., Lega, E. and Gonczi, R.: 1997a, 'Fast Lyapunov indicators. Application to asteroidal motion', Celest. Mech. & Dyn. Astr. 67, 41-62.Google Scholar
  9. Guzzo, M., Lega, E. and Froeschlé, C.: 2002, 'On the numerical detection of the stability of chaotic motions in quasi-integrable systems', Physica D 163, 1-25.Google Scholar
  10. Hénon, M. 1965, 'Exploration numérique du problème restreint, I', Ann. Astrophys. 28, 499-511.Google Scholar
  11. Hénon, M. and Heiles, C.: 1964, 'The applicability of the third integral of motion: some numerical experiments', A. J. 1, 73-79.Google Scholar
  12. Lichtenberg, A.J. and Lieberman, M.A.: 1983, Regular and Stochastic Motion, Springer, Berlin, Heidelberg, New York.Google Scholar
  13. Szebehely, V.: 1967, Theory of Orbits, Academic Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Marc Fouchard
    • 1
  • Elena Lega
    • 1
  • Christiane Froeschlé
    • 1
  • Claude Froeschlé
    • 1
  1. 1.Observatoire de NiceNice cedex 4France

Personalised recommendations