Functional Analysis and Its Applications

, Volume 36, Issue 3, pp 182–195

On Sums of Projections

  • S. A. Kruglyak
  • V. I. Rabanovich
  • Yu. S. Samoilenko


In the paper, for all n∈ℕ, we describe the set ∑n of all real numbers α admitting a collection of projections P1,...,Pn on a Hilbert space H such that ∑k=1nPkI (I is the identity operator on H) and study the problem to find all collections of this kind for a given α∈∑n.

algebra, representation, operator, matrix, projection, identity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Y. Wu, “Additive combination of special operators,” In: Functional Analysis and Operator Theory, Banach Center Publ., Vol. 30, Warszawa, 1994, pp. 337–361.Google Scholar
  2. 2.
    V. Jones, “Index for subfactors,” Invent. Math., 72, 1–25 (1983).Google Scholar
  3. 3.
    V. I. Rabanovich and Yu. S. Samoilenko, “When the sum of idempotents or projections is a multiple of the identity,” Funkts. Anal. Prilozhen., 34, No.4, 91–93 (2000); English transl. Funct. Anal. Appl., 34, No. 4, 311–313 (2000).Google Scholar
  4. 4.
    V. I. Rabanovich and Yu. S. Samoilenko, “When a scalar operator can be represented as a sum of projections,” Ukr.Mat.Zh., 53, No.7, 939–952 (2001); English transl. Ukr. Math. J., 53, No.7, 1116–1133 (2001).Google Scholar
  5. 5.
    S. A. Kruglyak, “Coxeter functors for a certain class of *-quivers,” Ukr. Mat. Zh., 54, No.6, 789–797 (2002).Google Scholar
  6. 6.
    I. I. Bernshtein, I. M. Gel'fand, and V. A. Ponomarev, “Coxeter functors and a theorem of Gabriel,” Usp. Mat. Nauk, Vol. 28, No.2, 19–33 (1973).Google Scholar
  7. 7.
    P. A. Fillmore, “On sums of projections,” J. Funct. Anal., 4, 146–152 (1969).Google Scholar
  8. 8.
    J.-H. Wang, Decomposition of Operators into Quadratic Type, Ph.D. Dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 1991.Google Scholar
  9. 9.
    Yu. V. Bespalov, “Sets of orthoprojectors connected by relations,” Ukr. Mat. Zh., 44, No.3, 309–317 (1992); English transl. in Ukr. Math. J., 44. No. 3, 269–277 (1992).Google Scholar
  10. 10.
    T. Ehrhardt, Sums of Four Idempotents, Preprint, Chemnitz, 1995.Google Scholar
  11. 11.
    V. Ostrovskyi and Yu. Samoilenko, Introduction to the Theory of Representations of Finitely Presented *-algebras. 1. Representations by bounded operators, Rev. Math. Math. Phys., Vol. 11, 1–261, Gordon and Breach, 1999.Google Scholar
  12. 12.
    A. V. Strelets, V. I. Rabanovich, and Yu. S. Samoilenko, “On identities in the algebras Q n,λ generated by idempotents,” Ukr. Mat. Zh., 53, No.10, 1380–1390 (2001); English transl. Ukr. Math. J., 53, No. 10, 1673–1687 (2001).Google Scholar
  13. 13.
    T. Ehrhardt, On Sums of Five Projections Equal to a Multiple of the Identity, Preprint, Chemnitz, 2000.Google Scholar
  14. 14.
    V. S. Shulman, “On representations of limit relations,” Methods Funct. Anal. Topology, 7, No.4, 85–86 (2001).Google Scholar
  15. 15.
    E. R. Djeldubaev and S. A. Kruglyak, “On representation of the *-algebra ℘n,1+ 1/ n-1,” Methods Funct. Anal. Topology, 7, No.2, 35–41 (2001).Google Scholar
  16. 16.
    J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1957, 1969.Google Scholar
  17. 17.
    S. A. Kruglyak and Yu. S. Samoilenko, “On a unitary equivalence of collections of self-adjoint operators,” Funkts. Anal. Prilozhen., 14, No.1, 60–62 (1980); English transl. F unct. Anal. Appl., 14, No. 1, 48–50 (1980).Google Scholar
  18. 18.
    S. A. Kruglyak and Yu. S. Samoilenko, “On complexity of description of representations of *-algebras generated by idempotents,” Proc. Amer. Math. Soc., 128, No.6, 1655–1664 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. A. Kruglyak
  • V. I. Rabanovich
  • Yu. S. Samoilenko

There are no affiliations available

Personalised recommendations