, Volume 3, Issue 5, pp 257–264

Aging, articular cartilage chondrocyte senescence and osteoarthritis



The incidence of osteoarthritis (OA), the disease characterized by joint pain and loss of joint form and function due to articular cartilage degeneration, is directly correlated with age. The strong association between age and increasing incidence of osteoarthritis (OA) marks OA as an age related disease. Yet, like many other age related diseases, OA is not an inevitable consequence of aging; instead, aging increases the risk of OA. Articular cartilage aging changes that may lead to articular cartilage degeneration include fraying and softening of the articular surface, decreased size and aggregation of proteoglycan aggrecans and loss of matrix tensile strength and stiffness. These changes most likely are the result of an age related decrease in the ability of chondrocytes to maintain and repair the tissue manifested by decreased mitotic and synthetic activity, decreased responsiveness to anabolic growth factors and synthesis of smaller less uniform aggrecans and less functional link proteins. Our recent work suggests that progressive chondrocyte senescence marked by expression of the senescence associated enzyme beta-galactosidase, erosion of chondrocyte telomere length and mitochondrial degeneration due to oxidative damage causes the age related loss of chondrocyte function. New efforts to prevent the development and progression of OA might include strategies that slow the progression of chondrocyte senescence or replace senescent cells.

aging articular cartilage chondrocyte mitochondria osteoarthritis oxidative damage senescence telomere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allsopp R and Harley C (1995) Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 219: 130-136PubMedCrossRefGoogle Scholar
  2. Allsopp RH, Vaziri M, Piatyszek S, Goldstein E, Younglai A, Futcher C, Greider H and Harley C (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89: 10114-10118PubMedCrossRefGoogle Scholar
  3. Allsopp RE, Chang M, Kashefi-Aazam E, Rogaec M, Piatyszek J, Shay J and Harley C (1995) Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220: 194-200PubMedCrossRefGoogle Scholar
  4. Arnheim N and Cortopassi G (1992) Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutation Res 275: 157-167PubMedCrossRefGoogle Scholar
  5. Beckman KB and Ames BN (1997) Oxidative Decay of DNA. J Biol Chem 272: 19633-19636PubMedCrossRefGoogle Scholar
  6. Beckman KB and Ames BN (1999) Endogenous oxidative damage of mtDNA. Mutat Res 424: 51-58PubMedGoogle Scholar
  7. Blackburn E (1991) Structure and function of telomeres. Nature 350: 569-572PubMedCrossRefGoogle Scholar
  8. Bolton MC, Dudhia J and Bayliss MT (1999) Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 337: 77-82PubMedCrossRefGoogle Scholar
  9. Buckwalter JA (1995) Osteoarthritis and articular cartilage use, disuse and abuse: experimental studies. J Rheumatol (suppl 43) 22: 13-15Google Scholar
  10. Buckwalter JA and Lane NE (1996) Aging, sports and osteoarthritis. Sports Med Arth Rev 4: 276-287Google Scholar
  11. Buckwalter JA and Lane NE (1997) Athletics and osteoarthritis. Am J Sports Med 25: 873-881PubMedGoogle Scholar
  12. Buckwalter JA and Lappin DR (2000) The disproportionate impact of chronic arthralgia and arthritis among women. Clin Orthop Rel Res 372: 159-168Google Scholar
  13. Buckwalter JA and Mankin HJ (1997a) Articular cartilage I. Tissue design and chondrocyte-matrix interactions. J Bone Joint Surg 79A: 600-611Google Scholar
  14. Buckwalter JA and Mankin HJ (1997b) Articular cartilage II. Degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Joint Surg 79A: 612-632Google Scholar
  15. Buckwalter JA and Martin JA (1995) Degenerative joint disease. Ciba Geigy Clinical Symposia 47: 2-32Google Scholar
  16. Buckwalter JA and Rosenberg LC (1982) Electron microscopic studies of cartilage proteoglycans: direct evidence for the variable length of the chondroitin sulfate rich region of the proteoglycan subunit core protein. J Biol Chem 257: 9830-9839PubMedGoogle Scholar
  17. Buckwalter JA and Rosenberg LC (1983) Structural changes during development in bovine fetal epiphyseal cartilage. Collagen Rel Res 3: 489-504Google Scholar
  18. Buckwalter JA and Rosenberg LC (1988) Electron microscopic studies of cartilage proteoglycans. Elec Microsc Rev 1: 87-112Google Scholar
  19. Buckwalter JA, Kuettner KE and Thonar EJ-M (1985) Age-related changes in articular cartilage proteoglycans: electron microscopic studies. J Orthop Res 3: 251-257PubMedCrossRefGoogle Scholar
  20. Buckwalter JA, Choi H, Tang L, Rosenberg L and Ungar R (1986) The effect of link protein concentration of proteoglycan aggregation. Trans 32nd Meeting Ortho Res Soc 11: 98Google Scholar
  21. Buckwalter JA, Goldberg V and Woo SL-Y (1993a) Musculoskeletal Soft-Tissue Aging: Impact on Mobility. American Academy of Orthopaedic Surgeons, Rosemont, IllinoisGoogle Scholar
  22. Buckwalter JA, Woo SL-Y, Goldberg VM, Hadley EC, Booth F, Oegema TR and Eyre DR (1993b) Soft tissue aging and musculoskeletal function. J Bone Joint Surg 75A: 1533-1548Google Scholar
  23. Buckwalter JA, Roughley PJ and Rosenberg LC (1994) Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Micros Res Tech 28: 398-408CrossRefGoogle Scholar
  24. Buckwalter JA, Martin JA and Mankin HJ (2000) Synovial joint degeneration and the syndrome of osteoarthritis. Ciba Geigy Instructional Course Lectures 49: 481-489Google Scholar
  25. Buckwalter JA, Mow VC and Hunziker EB (2001a) Concepts of Cartilage Repair in Osteoarthritis R In: Moskowitz VM, Goldberg D, Howell R, Altman and Buckwalter JA (eds) Osteoarthritis: Diagnosis and Medical/Surgical Management, 3rd edition, pp 101-114. Saunders, PhiladelphiaGoogle Scholar
  26. Buckwalter JA, Stanish WD, Rosier RN, Schenck RC, Dennis DA and Coutts RD (2001b) The increasing need for nonoperative treatment of osteoarthritis. Clin Ortho Rel Res 385: 36-45CrossRefGoogle Scholar
  27. Bullough PG and Brauer FU (1993) Age-related changes in articular cartilage In: Buckwalter JA, Goldberg VM and Woo SL-Y (eds) Soft Tissue Aging: Impact on Musculoskeletal Function and Mobility, pp 117-135. American Academy of Orthopaedic Surgeons, Rosemont, IllinoisGoogle Scholar
  28. Campisi J (1999) Replicative senescence and immortalization In: Stein GS (ed) The Molecular Basis of Cell Cycle and Growth Control, pp 348-373. Wiley-Liss, New YorkGoogle Scholar
  29. Clark WR (1999) AMeans to an End: the Biological Basis of Aging and Death. Oxford University Press, New YorkGoogle Scholar
  30. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB and Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921-1929PubMedGoogle Scholar
  31. DeGroot J, Verzijl N, Bank RA, Lafeber FPJG, Bijlsma JWJ and TeKoppele JM (1999) Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymic glycation. Arth Rheum 42: 1003-1009CrossRefGoogle Scholar
  32. Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campesi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363-9367PubMedCrossRefGoogle Scholar
  33. Dumont P, Chen QM, Burton M, Gonos ES, Frippiat C, Mazarati JB, Eliaers F, Remacle J and Toussaint O (2000) Induction of replicative senescence biomarkers by sublethal oxidative stress in normal human fibroblasts. Free Rad Biol Med 28: 361-373PubMedCrossRefGoogle Scholar
  34. Golden T and Melov S (2001) Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev 122: 1577-1589PubMedCrossRefGoogle Scholar
  35. Gorman C (1996) Relief for swollen joints. TIME: 86 Hayflick L (1965) The limited in virto lifetime of human diploid cell strains. Exp Cell Research 37: 614-636Google Scholar
  36. Hayflick L (1996) How and Why We Age. Ballantine Books, New YorkGoogle Scholar
  37. Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Research 25: 585-621CrossRefGoogle Scholar
  38. Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9: 272-277Google Scholar
  39. Kang CM, Kristal BS and Yu BP (1998) Age-related mitochondrial DNA deletions: effect of dietary restriction. Free Rad Biol Med 24: 148-154PubMedCrossRefGoogle Scholar
  40. Kempson GE (1980) The mechanical properties of articular cartilage In: Sokoloff L (ed) The Mechanical Properties of Articular Cartilage II, pp 177-238. Academic Press, New YorkGoogle Scholar
  41. Kempson GE (1982) Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis 41: 508-511PubMedGoogle Scholar
  42. Kempson GE (1991) Age-related changes in the tensile properties of human articular cartilage: a comparitive study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta 1075: 223-230PubMedGoogle Scholar
  43. Koepp H, Eger W, Muehleman C, Valdellon A, Buckwalter JA, Keuttner KE and Cole AA (1999) Prevalence of articular cartilage degeneration in the ankle and knee joints of human organ donars. J Ortho Science 4: 407-412CrossRefGoogle Scholar
  44. Kopsidas GS, Kovalenko A, Kelso JM and Linnane AW (1998) An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutation Res 421: 27-36PubMedGoogle Scholar
  45. Korchak HM, Rich AM, Wilkenfeld C, Rutherford LE and Weissmann G (1982) A carbocyanine dye, DiOC6(3), acts as a mitochondrial probe in human neutrophils. Biochem Biophys Res Commun 108: 1495-1501PubMedCrossRefGoogle Scholar
  46. Kovalenko SA, Harms PJ, Tanaka M, Baumer A, Kelso J, Ozawa T and Linnane AW (1997) Method for in situ investigation of mitochondrial DNA deletions. Human Mutation 10: 489-495PubMedCrossRefGoogle Scholar
  47. Lee CM, Weindrich R and Aiken JM (1997) Age-related alterations of the mitochondrial genome. Free Rad Biol Med 22: 1259-1269PubMedCrossRefGoogle Scholar
  48. Maftah A, Petit JM and Julien R (1990) Specific interaction of the new fluorescent dye 10-N-nonyl acridine orange with inner mitochondrial membrane. A lipid-mediated inhibition of oxidative phosphorylation. FEBS Lett 260: 236-240PubMedCrossRefGoogle Scholar
  49. Martin JA and Buckwalter JA (2000) The role of chondrocytematrix interactions in maintaining and repairing articular cartilage. Biorheology 37: 129-140PubMedGoogle Scholar
  50. Martin JA and Buckwalter JA (2001) Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol Biol Sci 56A: B172-B179Google Scholar
  51. Martin JA, Ellerbroek SM and Buckwalter JA (1997) The agerelated decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Ortho Res 15: 491-498CrossRefGoogle Scholar
  52. Mow VC, Setton LA, Guilak F and Ratcliffe A (1995) Mechanical factors in articular cartilage and their role in osteoarthritis In: Kuettner KE and Goldberg VM (eds) Osteoarthritic Disorders, pp 147-171. American Academy of Orthopaedic Surgeons, Rosemont, IllinoisGoogle Scholar
  53. Oh M, Fukuda K, Asada S, Yasuda Y and Tanaka S (1998) Concurrent generation of nitric oxide and superoxide inhibits proteoglycan synthesis in bovine articular chondrocytes: involvement of peroxynitrite. J Rheumatol 25: 2169-2174PubMedGoogle Scholar
  54. Praemer AP, Furner S and Rice DP (1992) Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons, Park Ridge, IllinoisGoogle Scholar
  55. Praemer A, Furner S and Rice DP (1999) Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons, Rosemont IllinoisGoogle Scholar
  56. Roth V and Mow VC (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg 62A: 1102-1117Google Scholar
  57. Tang LH, Buckwalter JA and Rosenberg LC (1996) The effect of link protein concentration on articular cartilage proteoglycan aggregation. J Orthop Res 14: 334-339PubMedCrossRefGoogle Scholar
  58. Thonar EJ, Buckwalter JA and Kuettner KE (1986a) Maturation related differences in the structure and composition of proteoglycans synthesized by chondrocytes from bovine articular cartilage. J Biol Chem 261: 2467-2474PubMedGoogle Scholar
  59. Thonar E-M, Bjornsson S and Kuettner KE (1986b) Age-related changes in cartilage proteoglycans In: Kuettner KE, Schleyerbach R and Hascall VC (eds) Articular Cart Biochem, pp 273-287. Raven Press, New YorkGoogle Scholar
  60. Toussaint O, Medrano E and Zglinicki TV (2000) Cellular and molecular mechanisms of stress-induced premature senescence (sips) of human diploid fibroblasts and melanocytes. Exp Gerontol 35: 927-945PubMedCrossRefGoogle Scholar
  61. Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, Bayliss MT, Bijlsma JWJ, Lafeber FPJG and TeKoppele JM (2000) Age-related accumulation of maillard reaction products in human articular cartilage collagen. Biochem J 350: 381-387PubMedCrossRefGoogle Scholar
  62. Volpin G, Dowd GS, Stein H and Bentley G (1990) Degenerative arthritis after intra-articular fractures of the knee: long-term results. J Bone Joint Surg 72B: 634-638Google Scholar
  63. Wallace DC (2001) A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp 235: 247-263PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of OrthopaedicsUniversity of IowaIowa CityUSA

Personalised recommendations