, Volume 6, Issue 3, pp 102–115 | Cite as

Catalysis of Gold Nanoparticles Deposited on Metal Oxides

  • Masatake Haruta


Gold in bulk is chemically inert and has often been regarded to be poorly active as a catalyst. However, when gold is small enough—with particle diameters below 10 nm—it turns out to be surprisingly active for many reactions, such as CO oxidation and propylene epoxidation. This is especially so at low temperatures. Here, a summary of the catalysis of Au nanoparticles deposited on base metal oxides is presented. The catalytic performance of Au is defined by three major factors: contact structure, support selection, and particle size, the first of which being the most important because the perimeter interfaces around Au particles act as the site for reaction.


Particle Size Gold Catalysis Propylene Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. I. Panov, CATTECH, 4 (2000) 18.Google Scholar
  2. [2]
    P. Forzatti, Appl. Catal. A: General, 222 (2001) 221.Google Scholar
  3. [3]
    H. Topsøe, B. S. Clausen, and F. E. Massoth, Hydrotreating Catalysis, Science and Technology, Springler, Berlin, 1996.Google Scholar
  4. [4]
    V. Ponec and G. C. Bond, Catalysis by Metals and Alloys, Elsevier, Amsterdam, 1996.Google Scholar
  5. [5]
    M. Iwamoto, Stud. Surf. Sci. Catal., 130 (2000) 23.Google Scholar
  6. [6]
    A. G. Sault, R. J. Madix, and C. T. Campbell, Surf. Sci., 169 (1986) 347.Google Scholar
  7. [7]
    N. Saliba, D. H. Parker, and B. E. Koel, Surf. Sci., 410 (1998) 270.Google Scholar
  8. [8]
    J. Wang and B. E. Koel, J. Phys. Chem. A102 (1998) 8573.Google Scholar
  9. [9]
    B. Hammer and J. K. Nø rskov, Nature, 376 (1995) 238.Google Scholar
  10. [10]
    K. Tanaka, T. Hayashi, M. Haruta, Interf. Sci. Material Interconnection, Proc. JIMIS-8, Jpn. Inst. Metals., 1996, pp.547–550.Google Scholar
  11. [11]
    Ph. Buffet and J-P. Borel, Phys. Rev. A, 13 (1976) 2287.Google Scholar
  12. [12]
    G. C. Bond and P. A. Sermon, Gold Bull., 6 (1973) 102.Google Scholar
  13. [13]
    G. C. Bond and P. A. Sermon, J. C. S. Chem. Comm., (1973) 444.Google Scholar
  14. [14]
    D. Y. Cha and G. Parravano, J. Catal. 18 (1970) 200.Google Scholar
  15. [15]
    S. Galvano and G. Parravano, J. Catal. 55 (1978) 178.Google Scholar
  16. [16]
    J. Schwank, Gold Bull., 16 (4) (1983) 103.Google Scholar
  17. [17]
    M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal., 115 (1989) 301.Google Scholar
  18. [18]
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal., 144 (1993) 175.Google Scholar
  19. [19]
    M. Haruta, Catal. Today, 36 (1997) 153.Google Scholar
  20. [20]
    M. Haruta, Catal. Surveys of Japan, 1 (1997) 61.Google Scholar
  21. [21]
    G. C. Bond and D. T. Thompson, Catal. Rev. Sci. Eng., 41 (1999) 319.Google Scholar
  22. [22]
    Osaka National Research Institute, Activity Report No. 393 (1999).Google Scholar
  23. [23]
    M. Haruta and M. Datè , Appl. Catal. A: General, 222 (2001) 427.Google Scholar
  24. [24]
    M. Haruta, S. Tsubota, and M. Okumura, in Advances in Catalyst Preparation (Japanese), eds. Y. Ono et al., Association for the Promotion of Catalyst Preparation Chemistry, Tokyo, 2000, pp39-50.Google Scholar
  25. [25]
    T. Kobayashi, M. Haruta, S. Tsubota, and H. Sano, Sensors and Actuators, B1 (1990) 222.Google Scholar
  26. [26]
    S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda, and Y. Nakahara, Stud. Surf. Sci.Catal., 63 (1991) 695.Google Scholar
  27. [27]
    M. Okumura, K. Tanaka, A. Ueda, and M. Haruta, Solid State Ionics, 95 (1997) 143.Google Scholar
  28. [28]
    M. Okumura, S. Tsubota, M. Iwamoto, and M. Haruta, Chem. Lett., (1998) 315.Google Scholar
  29. [29]
    M. Shibata, N. Kuwata, T. Masumoto, and H. Kimura, Chem. Lett., (1985) 1605.Google Scholar
  30. [30]
    Y. Yuan, A. P. Kozlova, K. Asakura, H. Wan, K. Tsai, and Y. Iwasawa, J. Catal., 170 (1997) 191.Google Scholar
  31. [31]
    M. Okumura and M. Haruta, Chem. Lett., (2000) 396.Google Scholar
  32. [32]
    T. Akita, K. Tanaka, S. Tsubota, and M. Haruta, J. Electron Microscopy, 49 (2000) 657.Google Scholar
  33. [33]
    M. Ichikawa, T. Akita, M. Okumura, K. Tanaka, and M. Haruta, Proc. 7th Intern. Symp. Advanced Physical Fields, Tsukuba, Nov. 2001, T. Noda ed., Nat. Inst. Materials Sci., pp 369-372.Google Scholar
  34. [34]
    T. Akita, P. Lu, S. Ichikawa, K. Tanaka, and M. Haruta, Surf. Interface Anal., 31 (2001) 73.Google Scholar
  35. [35]
    I. Langmuir, J. Amer. Chem. Soc., 40 (1918) 1361.Google Scholar
  36. [36]
    G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, Catal. Lett., 44 (1997) 83.Google Scholar
  37. [37]
    T. Hayashi, K. Tanaka, and M. Haruta, J. Catal., 178(1998) 566.Google Scholar
  38. [38]
    Z. M. Liu and M. A. Vannice, Catal. Lett., 43 (1997) 51.Google Scholar
  39. [39]
    M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, Catal. Lett., 51 (1998) 53.Google Scholar
  40. [40]
    M. Datè and M. Haruta, J. Catal. 201 (2001) 221.Google Scholar
  41. [41]
    D. A. H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta, J. Catal., 177 (1998) 1.Google Scholar
  42. [42]
    R. D. Walters, J. J. Weimer, and J. E. Smith, Catal. Lett., 30 (1995) 181.Google Scholar
  43. [43]
    M. Haruta, Now and Future, 7 (1992) 13.Google Scholar
  44. [44]
    A. Ueda and M. Haruta, Shigen Kankyou Taisaku (Resources and the Environmental Technology), 28 (1992) 1035.Google Scholar
  45. [45]
    M. Haruta, B. S. Uphade, S. Tsubota, and A. Miyamoto, Res. Chem. Intermed., 24 (1998) 329.Google Scholar
  46. [46]
    Y. A. Kalvachev, T. Hayashi, S. Tsubota, and M. Haruta, J. Catal., 186 (1999) 228.Google Scholar
  47. [47]
    B. S. Uphade, Y. Yamada, T. Nakamura, and M. Haruta, Appl. Catal. A: General, 215 (2001) 137.Google Scholar
  48. [48]
    E. E. Stangland, K. B. Stavens, R. P. Andres, and W. N. Delgass, J. Catal., 191 (2000) 332.Google Scholar
  49. [49]
    G. Mul, A. Zwijnenburg, B. Linden, M. Makkee, and J. A. Moulijn, J. Catal., (2001) 3239.Google Scholar
  50. [50]
    H. Sakurai and M. Haruta, Appl. Catal. A: General 127 (1995) 93.Google Scholar
  51. [51]
    A. Baiker, M. Kilo, M. Maciejewski, S. Menzi, and A. Wokaun, Proc. 10th Intern. Congr. Catal. (L. Guzci et al. eds.), Elsevier, Amsterdam, (1993) 1257.Google Scholar
  52. [52]
    A. Ueda and M. Haruta, Appl. Catal. B: Environmental, 285 (1996) 81 and Gold Bull., 32 (1999) 3.Google Scholar
  53. [53]
    M. Valden, X. Lai, and D. W. Goodman, Science, 281 (1998) 1647.Google Scholar
  54. [54]
    Y. Iizuka, T. Tode, T. Takao, K. Yatsu, T. Takeuchi, S. Tsubota, and M. Haruta, J. Catal., 187 (1999) 50.Google Scholar
  55. [55]
    W. Vogel, D. A. H. Cunningham, K. Tanaka, and M. Haruta, Catal. Lett., 40 (1996) 175.Google Scholar
  56. [56]
    D. A. H. Cunningham, W. Vogel, and M. Haruta, Catal. Lett., 63 (1999) 43.Google Scholar
  57. [57]
    U. Heiz and W.-D. Schneider, J. Phys. D: Appl. Phys., 33 (2000) R85.Google Scholar
  58. [58]
    S. Abbet, U. Heiz, H. Hkkinen, and U. Landman, Phys. Rev. Lett., 86 (2001) 5950.Google Scholar
  59. [59]
    U. Heiz, A. Sanchez, S. Abbet, and W-D. Schneider, J. Am. Chem. Soc., 121 (1999) 3214.Google Scholar
  60. [60]
    F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta, J. Catal., 202 (2001) 256–267.Google Scholar
  61. [61]
    M. Mavrikakis, P. Stoltze, and J. K. Nfrskov, Catal. Lett., 64 (2000) 101.Google Scholar
  62. [62]
    M. Olea, M. Kunitake, T. Shido, and Y. Iwasawa, Phys. Chem. Chem. Phys., 3 (2001) 627.Google Scholar
  63. [63]
    M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal., 197 (2001) 113.Google Scholar
  64. [64]
    H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, KL. Asakura, and Y. Iwasawa, J. Catal., 185 (1999) 252.Google Scholar
  65. [65]
    M. Okumura, J. M. Coronado, J. Soria, M. Haruta, and J. C. Conesa, J. Catal., 203 (2001) 168–174.Google Scholar
  66. [66]
    M. Haruta, M. Dat, Y. Iizuka, and F. Boccuzzi, Shokubai, 43 (2001) 125.Google Scholar
  67. [67]
    S. Minic, S. Scir, C. Crisafulli, A. M. Visco, and S. Galvagno, Catal. Lett., 47 (1997) 273.Google Scholar
  68. [68]
    Z. Hao, L. An, H. Wang, and T. Hu, React. Kinet. Catal. Lett., 70 (1) (2000) 153.Google Scholar
  69. [69]
    D. Horvàth, L. Toth, and L. Guczi, Catal. Lett., 67 (2000) 117.Google Scholar
  70. [70]
    F. E. Wagner, S. Galvagno, C. Milone, A. M. Visco, L. Stievano, and S. Calogero, J. Chem. Soc., Faraday Trans., 93 (1997) 3403.Google Scholar
  71. [71]
    H. Kageyama, N. Kamijo, T. Kobayashi, and M. Haruta, Physica B158 (1989) 183.Google Scholar
  72. [72]
    S. Tsubota, D. A. H. Cunningham, Y. Bando, and M. Haruta, Stud. Surf. Sci. Catal., 91 (1995) 227.Google Scholar
  73. [73]
    Y. Kobayashi, S. Nasu, S. Tsubota, and M. Haruta, Hyperfine Interactions, 126 (2000) 95.Google Scholar
  74. [74]
    G. C. Bond and D. T. Thompson, Gold Bull., 33 (2000) 41.Google Scholar
  75. [75]
    H. Sakurai, A. Ueda, T. Kobayashi, and M. Haruta, J. Chem. Soc. Chem. Commun., (1997) 271.Google Scholar
  76. [76]
    D. Andreeva, V. Idakiev, T. Tabakov, and A. Andreev, J. Catal., 158 (1996) 354.Google Scholar
  77. [77]
    T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov, Appl. Catal. A: General, 202 (2000) 336.Google Scholar
  78. [78]
    M. Mokhtar, T. M. Salama, and M. Ichikawa, J. Colloid Interface Sci., 224 (2000) 336.Google Scholar
  79. [79]
    R. M. Torres Sanchez, A. Ueda, K. Tanaka, and M. Haruta, J. Catal., 168 (1997) 125.Google Scholar
  80. [80]
    M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, J. Catal., 182 (1999) 430.Google Scholar
  81. [81]
    M. M. Schubert, S. Hachenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal., 187 (2001) 113.Google Scholar
  82. [82]
    M. Okumura, S. Nakamura, and M. Haruta, to be submitted.Google Scholar
  83. [83]
    J. Jia, K. Haraki, J. N. Kondo, K. Domen, and K. Tamaru, J. Phys. Chem., B 104 (2000) 11153.Google Scholar
  84. [84]
    Z. Xu, F.-S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsh, and B. C. Gates, Nature, 372 (1994) 346.Google Scholar
  85. [85]
    P. Claus, A. Brückner, C. Mohr, and H. Hofmeister, J. Am. Chem. Soc., 122 (2000) 11430.Google Scholar
  86. [86]
    C. Mohr, and H. Hofmeister, M. Lucas, and P. Clause, Chem. Eng. Technol., 23 (2000) 4.Google Scholar
  87. [87]
    J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Roechester, N. V. Richardson, N. Hodge, J-G. Zhang, A. Burrows, C. J. Kiely, and G. J. Hutchings, Phys. Chem. Chem. Phys., 3 (2001) 4113.Google Scholar
  88. [88]
    C. Bianchi, F. Porta, L. Prati, and M. Rossi, Topics in Catal., 13 (2000) 231.Google Scholar
  89. [89]
    F. Porta, L. Prati, M. Rossi, S. Coluccia, and G. Martra, Catal. Today, 61 (2000) 165.Google Scholar
  90. [90]
    L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, and C. Frigeri, J. Chem. Soc. Chem. Commun., (2000) 2253.Google Scholar
  91. [91]
    A. Ueda and M. Haruta, Appl. Catal. B: Environmental, 18 (1998) 115.Google Scholar
  92. [92]
    C. N. Hinshelwood and C. R. Prichard, Proc. Roy. Soc. London, 108A (1925) 211.Google Scholar
  93. [93]
    V. M. Stepanov, V. D. Yagodovskii, and H. Agilar, Russian J. Phys. Chem., 49 (1975) 1335.Google Scholar
  94. [94]
    L. Yan, X. Zhang, T. Ren, H. Zhang, X. Wang, and J. Suo, Chem. Comm., (2002) 860.Google Scholar
  95. [95]
    B. Nkosi, M. D. Adams, N. J. Coville, and G. J. Hutchings, J. Catal., 128 (1991) 333, 378.Google Scholar
  96. [96]
    T. Aida, R. Higuchi, and H. Niiyama, Chem. Lett., (1990) 2247.Google Scholar
  97. [97]
    Y. Takita, T. Imamura, Y. Mizuhara, Y. Abe, and T. Ishihara, Appl. Catal. B: Environmental, 1 (1992) 79.Google Scholar
  98. [98]
    M. Okumura, M. Haruta, X. Wang, O. Kajikawa, and O. Okada, Abstract, 3rd Intern. Conf. Environmental Catal., Tokyo, Dec. 2001, pp.1516.Google Scholar
  99. [99]
    NASA Conf. Publ. No. 3076, Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers, D. R. Schryer and G. B. Hoflund eds., 1990.Google Scholar
  100. [100]
    J. A. Macken, S. K. Yagnik, and M. A. Samis, IEEE J. Quantum Electron., 25 (1989) 1695.Google Scholar
  101. [101]
    S.A. Starostin, Y. B. Udalov, P. J. M. Peters, and W.J. Witteman, Appl. Phys. Lett., 77 (2000) 3337.Google Scholar
  102. [102]
    V. M. Cherezov, M. Z. Novgorodov, V. N. Ochkin, V. G. Samorodov, E. F. Shishkanov, V. A. Stepanov, and W. J. Witteman, Appl. Phys., B71 (2000) 503.Google Scholar
  103. [103]
    B. S. Uphade, T. Akita, T. Nakamura, and M. Haruta, J. Catal., in press.Google Scholar
  104. [104]
    Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, and M. Haruta, Appl. Catal. A: General, 171 (1998) 123.Google Scholar
  105. [105]
    F. Cosandey and T. E. Madey, Surf. Rev. Lett., 8 (2001) 73.Google Scholar
  106. [106]
    V. A. Bondzie, S. C. Parker, and C. T. Campbell, Catal. Lett., 63 (1999) 143.Google Scholar
  107. [107]
    R. Schölgl, CATTECH, 5 (2001) 146.Google Scholar
  108. [108]
    D. A. H. Cunningham, T. Kobayashi, N. Kamijo, and M. Haruta, Catal. Lett., 25 (1994) 257.Google Scholar
  109. [109]
    M. Haruta, M. Yoshizaki, D. A. H. Cunningham, and T. Iwasaki, Ultraclean Technology (Japanese), 8 (1996) 1.Google Scholar
  110. [110]
    S. Tsubota, T. Nakamura, K. Tanaka, and M. Haruta, Catal. Lett., 56 (1998)Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Masatake Haruta
    • 1
  1. 1.Research Institute for Green TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations