Advertisement

Journal of Nanoparticle Research

, Volume 4, Issue 1–2, pp 131–136 | Cite as

A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a Solid Catalyst

  • D.E. Resasco
  • W.E. Alvarez
  • F. Pompeo
  • L. Balzano
  • J.E. Herrera
  • B. Kitiyanan
  • A. Borgna
Article

Abstract

Existing single-walled carbon nanotube synthesis methods are not easily scalable, operate under severe conditions, and involve high capital and operating costs. The current cost of SWNT is exceedingly high. A catalytic method of synthesis has been developed that has shown potential advantages over the existing methods. This method is based on a catalyst formulation that inhibits the formation of undesired forms of carbon; it can be scaled-up and may result in lower production costs.

carbon nanotubes SWNT catalysis Cobalt–Molybdenum catalyst large-scale production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez W.E., B. Kitiyanan, A. Borgna &; D.E. Resasco, 2001. Carbon 39, 547.Google Scholar
  2. Andrews R., D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen &; R. Haddon, 1999. Appl. Phys. Lett. 75, 1329.Google Scholar
  3. Bandow S., S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter &; P.C. Eklund, 1998. Phys. Rev. Lett. 80, 3779.Google Scholar
  4. Dresselhaus M.S., G. Dresselhaus &; P. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego, 802.Google Scholar
  5. Hafner J.H., M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith &; R.E. Smalley, 1998. Chem. Phys. Lett. 296, 195.Google Scholar
  6. Herrera E.J., L. Balzano, A. Borgna, W.E. Alvarez &; D.E. Resasco 2001. J. Catal. 204, 129.Google Scholar
  7. Journet C., W.K. Maser, P. Bernier, A. Loiseau, M.L. De La Chapelle, S. Lefrant, P. Deniart, R. Lee &; J.E. Fisher, 1997. Nature 388, 756.Google Scholar
  8. Kitiyanan B.,W.E. Alvarez, J.H. Harwell &; D.E. Resasco, 2000. Chem. Phys. Lett. 317, 497.Google Scholar
  9. Kwon Y.K., D. Tomanek &; S. Ijima, 1999. Phys. Rev. Lett. 82, 1470.Google Scholar
  10. Nikolaev P., M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith &; R.E. Smalley, 1999. Chem. Phys. Lett. 313, 91.Google Scholar
  11. Rao A.M., E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A.Williams, S. Fang, K. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus &; M.S. Dresselhaus, 1997. Science 275, 187.Google Scholar
  12. Rinzler A.G., J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fisher, A.M. Rao, P.C. Eklund &; R.E. Smalley, 1998. Appl. Phys. A 67, 29.Google Scholar
  13. Tans S.J., A.R. Verschueren &; C. Dekker, 1998. Nature 393, 49.Google Scholar
  14. Yakobson B.I. &; R.E. Smalley, 1997. Amer. Scientist 85, 324.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D.E. Resasco
    • 1
  • W.E. Alvarez
    • 1
  • F. Pompeo
    • 1
  • L. Balzano
    • 1
  • J.E. Herrera
    • 1
  • B. Kitiyanan
    • 1
  • A. Borgna
    • 1
  1. 1.School of Chemical Engineering and Materials ScienceUniversity of OklahomaNormanUSA

Personalised recommendations