Advertisement

Functional Analysis and Its Applications

, Volume 36, Issue 3, pp 250–252 | Cite as

Spectral Shift Function of the Schrödinger Operator in the Large Coupling Constant Limit

  • A. B. Pushnitski
  • M. V. Ruzhansky
Article
  • 48 Downloads

Abstract

The spectral shift function of a Schrödinger operator with a perturbation of definite sign is considered. The asymptotics of the spectral shift function for large coupling constant is studied, and results concerning positive and negative perturbations are compared. A more general case of unperturbed operator given by a function of the Laplacian is discussed. This case explains the dependence of the asymptotics of the spectral shift function on the perturbation potential on the one hand and on the order of the unperturbed operator on the other hand.

spectral shift function, Schrodinger operator, scattering theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sh. Birman and M. Z. Solomyak, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 13, No.3, 13–21 (1977); English transl. Vestnik Leningrad. Univ. Math., 10, No. 3, 237–247 (1982).Google Scholar
  2. 2.
    M. Sh. Birman and M. Z. Solomyak, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 13, No.3, 5–10 (1979); English transl. Vestnik Leningrad. Univ. Math., 12, No. 3, 155–161 (1980).Google Scholar
  3. 3.
    M. Sh. Birman and D. R. Yafaev, Algebra Analiz, 4, No.5, 1–44 (1992); English transl. St. Petersburg Math. J., 4, No. 5, 833–870 (1993).Google Scholar
  4. 4.
    A. B. Pushnitski, Algebra Analiz, 9, No.6, 197–213 (1997); English transl. St. Petersburg Math. J., 9, No. 6, 1181–1194 (1998).Google Scholar
  5. 5.
    A. Pushnitski, Comm. Partial Differential Equations, 25, Nos.3–4, 703–736 (2000).Google Scholar
  6. 6.
    A. Pushnitski and M. Ruzhansky, Spectral Shift Function of the Schrödinger Operator in the Large Coupling Constant Limit, II. Positive Perturbations, Preprint 01/07, Loughborough University, 2001; Comm. Partial Differential Equations, 27, Nos. 7, 8, 1373–1405 (2002).Google Scholar
  7. 7.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators, Academic Press, New York, 1978.Google Scholar
  8. 8.
    O. Safronov, J. Funct. Anal., 182, No.1, 151–169 (2001).Google Scholar
  9. 9.
    D. R. Yafaev, Mathematical Scattering Theory. General Theory, Amer. Math. Soc., Providence, RI, 1992.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. B. Pushnitski
  • M. V. Ruzhansky

There are no affiliations available

Personalised recommendations