Journal of Philosophical Logic

, Volume 31, Issue 5, pp 387–414 | Cite as

Propositional Q-Logic

  • Stefan Wölfl


Topic of the paper is Q-logic – a logic of agency in its temporal and modal context. Q-logic may be considered as a basal logic of agency since the most important stit-operators discussed in the literature can be defined or axiomatized easily within its semantical and syntactical framework. Its basic agent dependent operator, the Q-operator (also known as Δ- or cstit-operator), which has been discussed independently by F. v. Kutschera and B. F. Chellas, is investigated here in respect of its relation to other temporal and modal operators. The main result of the paper, then, is a completeness result for a calculus of Q-logic with respect to a semantics defined on the tree-approach to agency as introduced and developed by, among others, F. v. Kutschera and N. D. Belnap.

agency branching histories completeness stit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belnap, N. D.: 1991a, Backwards and forwards in the modal logic of agency, Philos. Phenomen. Res. 51, 777-807.Google Scholar
  2. Belnap, N. D.: 1991b, Before refraining: Concepts for agency, Erkenntnis 34, 137-169.Google Scholar
  3. Belnap, N. D. and Perloff, M.: 1990, Seeing to it that: A canonical form for agentives, in H. E. Kyburg, Jr., R. P. Loui, and G. N. Carlson (eds.), Knowledge Representation and Defeasible Reasoning, Kluwer Academic Publishers, Dordrecht, pp. 175-199.Google Scholar
  4. Belnap, N. D. and Perloff, M.: 1992, The way of the agent, Studia Logica 51, 463-484.Google Scholar
  5. Belnap, N. D., Perloff, M. and Xu, M.: 2001, Facing the Future: Agents and their Choices in our Indeterminist World, Oxford University Press, New York.Google Scholar
  6. Chellas, B. F.: 1992, Time and modality in the logic of agency, Studia Logica 51, 485-517.Google Scholar
  7. de Rijke, M.: 1992, The modal logic of inequality, J. Symbolic Logic 57(2), 566-584.Google Scholar
  8. Gabbay, D. M., Hodkinson, I. and Reynolds M.: 1994, Temporal Logic: Mathematical Foundations and Computational Aspects, Vol. I, Oxford Logic Guides 28, Clarendon Press, Oxford.Google Scholar
  9. Gargov, G. and Goranko, V.: 1993, Modal logic with names, J. Philos. Logic 22, 607-636.Google Scholar
  10. Horty, J. F.: 2001, Agency and Deontic Logic, Oxford University Press, Oxford.Google Scholar
  11. Horty, J. F. and Belnap, N. D.: 1995, The deliberative stit: A study of action, omission, ability, and obligation, J. Philos. Logic 24, 583-644.Google Scholar
  12. Kutschera, F. v.: 1986, Bewirken, Erkenntnis 24, 253-281.Google Scholar
  13. Kutschera, F. v.: 1997, T × W-completeness, J. Philos. Logic 26, 241-250.Google Scholar
  14. Maio, M. C. D. and Zanardo, A.: 1994, Synchronized histories in Prior-Thomason representation of branching time, in D. M. Gabbay and H. J. Ohlbach (eds.), Proceedings of the First International Conference on Temporal Logic, ICTL '94, Lecture Notes in Artificial Intelligence 827, Springer-Verlag, Berlin, pp. 265-282.Google Scholar
  15. Maio, M. C. D. and Zanardo, A.: 1998, A Gabbay-rule free axiomatization of T×W validity, J. Philos. Logic 27, 435-487.Google Scholar
  16. Reynolds, M.: 2001, An axiomatization of full computation tree logic, J. Symbolic Logic 66(3), 1011-1057.Google Scholar
  17. Thomason, R. H.: 1984, Combinations of tense and modality, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic: Extensions of Classical Logic, Vol. II, D. Reidel, Dordrecht, pp. 135-165.Google Scholar
  18. Wölfl, S.: 1999a, Combinations of tense and modality for predicate logic, J. Philos. Logic 28, 371-398.Google Scholar
  19. Wölfl, S.: 1999b, Kombinierte Zeit-und Modallogik: Vollständigkeitsresultate für prädikatenlogische Sprachen, Logische Philosophie 5, Logos Verlag, Berlin.Google Scholar
  20. Xu, M.: 1994a, Decidability of stit theory with a single agent and refref equivalence, Studia Logica 53(2), 259-298.Google Scholar
  21. Xu, M.: 1994b, Decidability of deliberative stit theories with multiple agents, in D. M. Gabbay and H. J. Ohlbach (eds.), Temporal Logic, Springer, Berlin, pp. 332-348.Google Scholar
  22. Xu, M.: 1994c, Doing and refraining from refraining, J. Philos. Logic 23(6), 621-632.Google Scholar
  23. WÖLFL Xu, M.: 1995a, Busy choice sequences, refraining formulas, and modalities, Studia Logica 54(3), 267-301.Google Scholar
  24. Xu, M.: 1995b, On the basic logic of stit with a single agent, J. Symbolic Logic 60(2), 459-483.Google Scholar
  25. Xu, M.: 1998, Axioms for deliberative stit, J. Philos. Logic 27(5), 505-552.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Stefan Wölfl
    • 1
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations