Water, Air and Soil Pollution: Focus

, Volume 2, Issue 2, pp 233–249

Mercury Loading and Methylmercury Production and Cycling in High-Altitude Lakes from the Western United States

  • David P. Krabbenhoft
  • Mark L. Olson
  • John F. Dewild
  • David W. Clow
  • Robert G. Striegl
  • Mark M. Dornblaser
  • Peter VanMetre
Article

Abstract

Studies worldwide have shown that mercury (Hg) is a ubiquitouscontaminant, reaching even the most remote environments such ashigh-altitude lakes via atmospheric pathways. However, very fewstudies have been conducted to assess Hg contamination levels ofthese systems. We sampled 90 mid-latitude, high-altitude lakes from seven national parks in the western United States during afour-week period in September 1999. In addition to the synoptic survey, routine monitoring and experimental studies were conducted at one of the lakes (Mills Lake) to quantify MeHg fluxrates and important process rates such as photo-demethylation. Results show that overall, high-altitude lakes have low total mercury (HgT) and methylmercury (MeHg) levels (1.07 and 0.05 ng L-1, respectively), but a very good correlation of Hg to MeHg (r2= 0.82) suggests inorganic Hg(II) loading is a primary controlling factor of MeHg levels in dilute mountain lakes. Positive correlations were also observed for dissolved organic carbon (DOC) and both Hg and MeHg, although to a much lesser degree. Levels of MeHg were similar among the seven national parks, with the exception of Glacier National Park where lowerconcentrations were observed (0.02 ng L-1), and appear to berelated to naturally elevated pH values there. Measured rates ofMeHg photo-degradation at Mills Lake were quite fast, and thisprocess was of equal importance to sedimentation and stream flowfor removing MeHg. Enhanced rates of photo-demethylation are likely an important reason why high-altitude lakes, with typically high water clarity and sunlight exposure, are low in MeHg.

high altitude lakes mercury methylmercury photo-demethylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amyot, M., Mierle, G., Lean, D. R. S. and McQueen, D. J.: 1994, 'Sunlight-induced formation of dissolved gaseous mercury in lake waters', Environ. Sci. Technol. 28, 2366–2371.Google Scholar
  2. Benoit, J. M., Hurley, J. P., Babiarz, C. L., Andren, A. W. and Krabbenhoft, D. P.: 1994, 'A Mass Balance Study of Mercury for Pallette Lake, Wisconsin (Abstract), Mercury As a Global Pollutant, Toward Integration and Synthesis', Proceedings of the 3rd International Meeting, Whistler, B.C., 4–8 August, 1994.Google Scholar
  3. Benoit, J. M., Gilmour, C. C., Mason, R. P. and Heyes, A.: 1999, 'Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment and pore waters', Environ. Sci. Technol. 33, 951–957.Google Scholar
  4. Bloom, N. S.: 1992, 'On the methylmercury content of fish', Can. J. Fish. Aquat. Sci. 49, 1131–1140.Google Scholar
  5. Bloom, N. S. and Fitzgerald, W. F.: 1988, 'Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection', Anal. Chim. Acta. 208, 151–161.Google Scholar
  6. Bodaly, R. A., Hecky, R. E. and Fudge, R. J. P.: 1984, 'Increases in fish mercury levels in lakes flooded by the Churchill River diversion, Northern Manitoba', Can. J. Fish. Aquat. Sci. 41, 682–691.Google Scholar
  7. Clow, D. W., Striegl, R., Nanus, L., Mast, M. A., Campbell, D. H. and Krabbenhoft, D. P.: 2002, 'Chemistry of selected high-elevation lakes in seven national parks in the western United States', Water, Air, and Soil Pollut.: Focus 2, 139–164.Google Scholar
  8. Engstrom, D. R. and Swain, E. B.: 1997, 'Recent declines in atmospheric mercury deposition in the upper midwest, Environ. Sci. Technol. 31, 960–967.Google Scholar
  9. Fitzgerald, W. F.: 1995, 'Is mercury increasing in the atmosphere? The need for an atmospheric mercury network (AMNET)', Water, Air, and Soil Pollut. 80, 245–254.Google Scholar
  10. Fitzgerald, W. F. and Watras, C. J.: 1989, 'Mercury in surficial waters rural Wisconsin lakes', Sci. Total Environ. 87/88, 223–232.Google Scholar
  11. Gilmour, C. C., Henry, E. A. and Mitchell, R.: 1991, 'Sulfate stimulation of mercury methylation in freshwater sediments', Environ. Sci. Technol. 26, 281–2287.Google Scholar
  12. Gilmour, C. C., Riedel, G. S., Ederlington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A. and Stordal, M. C.: 1998, 'Methylmercury concentrations and production rates across a trophic gradient in the Northern Everglades', Biogeochemistry 40, 326–346.Google Scholar
  13. Gill, G. A. and Fitzgerald, W. F.: 1987, 'Picomolar mercury measurements in seawater and other materials using stannous chloride reduction and two-stage gold amalgamation with gas phase detection', Marine Chem. 20, 227–243.CrossRefGoogle Scholar
  14. Heinz, G. H. and Hoffman, D. J.: 1998, 'Methylmercury chloride and selenomethionine interactions on health and reproduction in Mallards', Environ. Toxic. Chem. 17, 139–145.Google Scholar
  15. Horvat, M., Bloom, N. S. and Liang, L.: 1993, 'Comparison of distillation with other current isolation methods for the determination of MeHg compounds in low level environmental samples. Part I. Sediment', Anal. Chim. Acta 282, 135–152.Google Scholar
  16. Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sulivan, J. R., Hammond, R. and Webb, D.: 1995, 'Influences of watershed characteristics on mercury levels in Wisconsin rivers', Environ. Sci. Technol. 29, 1867–1875.Google Scholar
  17. Kelly, C. A., Rudd, J. W. M., Bodaly, R. A., Roulet, N. P., St. Louis, V. L., Heyes, A., Moore, R. R., Schiff, S., Aravena, R., Scott, K. J., Dyck, B., Harris, R., Warner, B. and Edwards, G.: 1997, 'Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir', Environ. Sci. Technol. 31, 1334–1344.Google Scholar
  18. Krabbenhoft, D. P., Beniot, J. M. Babiarz, C. L., Hurley, J. P. and Andren, A. W.: 1995, 'Mercury cycling in the Allequash Creek watershed, northern Wisconsin', Water, Air, and Soil Pollut. 80, 425–433.Google Scholar
  19. Krabbenhoft, J. P. Hurley, M. L. Olson, and Cleckner, L. B.: 1998a, 'Diurnal variability of mercury phase and species distributions in the Florida Everglades', Biogeochemistry 40, 311–325.Google Scholar
  20. Krabbenhoft, D. P., Gilmour, C. C. Beniot, J. M. Babiarz, C. L. Andren, A. W. and Hurley, J. P.: 1998b, 'Methylmercury dynamics in littoral sediments of a temperate seepage lake', Can. J. Fish. Aquat. Sci. 55, 835–844.Google Scholar
  21. Krabbenhoft, D. P., Wiener, J. G., Brumbaugh, W. G., Olson, M. L., DeWild, J. F. and Sabin, T. J.: 1999, 'A National Pilot Study of Mercury Contamination of Aquatic Ecosystems along Multiple Gradients', in D. W. Morganwalp and H. T. Buxton, (eds), U.S. Geological Survey Toxic Substances Hydrology Program — Proceedings of the Technical Meeting, Charleston, South Carolina, 8–12 March 1999, Vol. 2 of 3, Contamination of Hydrologic Systems and Related Ecosystems: U.S. Geological Survey Water-Resources Investigations Report 99-4018B, pp. 147–160.Google Scholar
  22. Laurion, I., Ventura, M., Catalan, J., Psenner, R. and Sommaruga, R.: 2000, 'Attenuation of ultra-violet radiation in mountain lakes: Factors controlling the among-and within-lake variability', Limnol. and Oceanogr. 45(6), 1274–1288.Google Scholar
  23. Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., Moeller, R. and Queimalinos, C.: 1995, 'The attenuation of solar UV radiation in lakes and the role dissolved organic carbon', Limnol. and Oceanogr. 40(8), 1381–1391.Google Scholar
  24. Olson, M. L., Cleckner, L. B. Hurley, J. P. Krabbenhoft, D. P. and Heelan, T. W.: 1997, 'Resolution of matrix effects on analysis of total and methyl mercury in aqueous samples from the Florida Everglades', Fresenius J. Anal. Chem. 358, 392–396.Google Scholar
  25. Olson, M. L. and DeWild, J. F.: 1999, 'Low-level Techniques for the Collection and Species-specific Analysis of Low Levels of Mercury in Water, Sediment and Biota', in D. W. Morganwalp and H. T. Buxton (eds), U.S. Geological Survey Toxic Substances Hydrology Program — Proceedings of the Technical Meeting, Charleston, South Carolina, 8–12 March 1999, Vol. 2 of 3, Contamination of Hydrologic Systems and Related Ecosystems: U.S. Geological Survey Water-Resources Investigations Report 99-4018B, pp. 191–200.Google Scholar
  26. Patterson, C. C. and Settle, D. M.: 1976, 'The Reduction of Orders of Magnitude Errors in Lead Analyses of Biological Materials and Natural Waters by Evaluating and Controlling the Extent and Sources of Industrial Lead Contamination Introduced during Sample Collection, Handling and Analysis', in P. D. LaFleur (ed.), Accuracy in Trace Analysis: Sampling, Sample Handling, and Analysis U.S. National Bureau of Standards Special Publication 422, pp. 321–351.Google Scholar
  27. Scheuhammer, A. M.: 1991, 'Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals', Environ. Pollut. 71, 329–375.PubMedGoogle Scholar
  28. Sellers, P., Kelly, C. A., Rudd, J. W. M. and MacHutchon, A. R.: 1996, 'Photodegradation of methylmercury in lakes', Nature 380, 694–697.Google Scholar
  29. St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S. and Flett, R. J.: 1994, 'Importance of wetlands as sources of methyl mercury to boreal forest ecosystems', Can. J. Fish. Aquat. Sci. 51, 1065–1076.Google Scholar
  30. Swain, E. B., Engstrom, D. R., Brigham, M. F., Henning, T. A. and Brezonik, P. L.: 1992, 'Increasing rates of atmospheric mercury deposition in the midcontinental North America', Science, (Washington, DC) 257, 784–787.Google Scholar
  31. U.S. Environmental Protection Agency: 2001, Update: Listing of Fish and Wildlife Advisories. LFWA Fact Sheet EPA-823-F-01-010, Office of Water, Washington, DC, 9 pp.Google Scholar
  32. United States Environmental Protection Agency (USEPA): 1997, Mercury Study Report to Congress, United States Environmental Protection Agency, EPA-452-97-003-010, Office of Air and Radiation, 1980 pp.Google Scholar
  33. Van Metre, P. C., Callender, E. and Fuller, C. C.: 1998, 'Similar rates of decrease of persistent, hydrophobic and particle-reactive contaminants in riverine systems', Environ. Sci. Technol. 32, 3312–3317.Google Scholar
  34. Watras, C. J., Bloom, N. S., Hudson, R. J. M., Gherini, S., Munson, R., Claas, S., Morrison, K., Hurley, J.P., Wiener, J. G., Fitzgerald, W. F., Mason, R., Vandal, G., Powel, D., Rada, R., Rislov, L., Winfey, M., Krabbenhoft, D. P., Andren, A. W., Babiarz, C., Porcella, D. B. and Huckabee, J.: 1994, 'Sources and Fates of Mercury and Methylmercury in Wisconsin Lakes', in Watras and Huckabee (eds), Mercury as a Global Pollutant: Integration and Synthesis, Lewis Pub., Chelsea, MI, pp. 153–177.Google Scholar
  35. Watras, C. J., Morrison, K. A., Host, K. and Bloom, N. S.: 1995a, 'Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes', Limnol. and Oceanogr. 40, 556–565.Google Scholar
  36. Watras, C. J., Morrison, K. A. and Bloom, N. S.: 1995b, 'Mercury in remote Rocky Mountain lakes of Glacier National Park, Montana, in comparison with other temperate North American regions, Can. J. Fish. Aquat. Sci. 52, 1220–1228.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David P. Krabbenhoft
    • 1
  • Mark L. Olson
    • 1
  • John F. Dewild
    • 1
  • David W. Clow
    • 2
  • Robert G. Striegl
    • 2
  • Mark M. Dornblaser
    • 2
  • Peter VanMetre
    • 3
  1. 1.U.S. Geological SurveyMiddletonU.S.A.
  2. 2.U.S. Geological SurveyDenverU.S.A
  3. 3.U.S. Geological SurveyAustinU.S.A

Personalised recommendations