Journal of Philosophical Logic

, Volume 31, Issue 5, pp 445–467

The Hooded Man

  • Graham Priest
Article

Abstract

The Hooded Man Paradox of Eubulides concerns the apparent failure of the substitutivity of identicals in epistemic (and other intentional) contexts. This paper formulates a number of different versions of the paradox and shows how these may be solved using semantics for quantified epistemic logic. In particular, two semantics are given which invalidate substitution, even when rigid designators are involved.

epistemic logic Eubulides substitution of identicals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Boër, S. E. and Lycan, W. G.: 1986, Knowing Who, MIT Press, Cambridge, MA.Google Scholar
  2. Boh, I.: 1993, Epistemic Logic in the Later Middle Ages, Routledge, London.Google Scholar
  3. Bressan, A.: 1972, A General Interpreted Modal Calculus, Yale University Press, New Haven, CT.Google Scholar
  4. Fitting, M. and Mendelsohn, R.: 1998, First Order Modal Logic, Kluwer Academic Publishers, Dordrecht.Google Scholar
  5. Frege, G.: 1952, On sense and reference, in P. Geach and M. Black (trans.), Translations from the Writings of Gottlob Frege, Basil Blackwell, Oxford.Google Scholar
  6. Gupta, A.: 1980, The Logic of Common Nouns, Yale University Press, New Haven, CT.Google Scholar
  7. Hicks, R. D. (trans.): 1925, Diogenes Laertius: Lives of Eminent Philosophers, Harvard University Press, Cambridge, MA.Google Scholar
  8. Hintikka, J.: 1962, Knowledge and Belief: An Introduction to the Logic of the Two Notions, Cornell University Press, Ithaca, NY.Google Scholar
  9. Hintikka, J.: 1971, Semantics for propositional attitudes, Ch. 10 of Linsky (1971).Google Scholar
  10. Horcutt, M. O.: 1972, Is epistemic logic possible?, Notre Dame J. Formal Logic 13, 433-453.Google Scholar
  11. Hughes, G. E. and Cresswell, M.: 1968, Introduction to Modal Logic, Methuen, London.Google Scholar
  12. Kaplan, D.: 1971, Quantifying in, Ch. 9 of Linsky (1971).Google Scholar
  13. Kneale, W. and Kneale, M.: 1962, The Development of Logic, Clarendon Press, Oxford.Google Scholar
  14. Kripke, S.: 1979, A puzzle about belief, in A. Margalit (ed.), Meaning and Use, Reidel, Dordrecht, pp. 239-283.Google Scholar
  15. Kripke, S.: 1980, Naming and Necessity, Basil Blackwell, Oxford.Google Scholar
  16. Lewis, D.: 1968, Counterpart theory and quantified modal logic, J. Philos. 65, 113-126; reprinted as Ch. 3 of Philosophical Papers, Vol. 1, Oxford University Press, Oxford, 1983.Google Scholar
  17. Linsky, L.: 1971, Reference and Modality, Oxford University Press, Oxford.Google Scholar
  18. Parks, Z.: 1974, Semantics for contingent identity systems, Notre Dame J. Formal Logic 15, 333-334.Google Scholar
  19. Parks, Z.: 1976, Investigations into quantified modal logic, Studia Logica 35, 109-125.Google Scholar
  20. Parks, Z. and Smith, T. L.: 1974, The inadequacy of Hughes and Cresswell's semantics for contingent identity systems, Notre Dame J. Formal Logic 15, 331-332.Google Scholar
  21. Priest, G.: 2000, Objects of thought, Australasian J. Philos. 78, 494-502.Google Scholar
  22. Priest, G.: 2001, An Introduction to Non-Classical Logic, Cambridge University Press, Cambridge.Google Scholar
  23. Quine, W. V. O.: 1971, Quantifiers and propositional attitudes, Ch. 8 of Linsky (1971).Google Scholar
  24. Rantala, V.: 1982, Impossible world semantics and logical omniscience, Acta Philosophica Fennica 35, 106-115.Google Scholar
  25. Salmon, N.: 1986, Frege's Puzzle, Ridgeview Publishing Co., Atascadero, CA.Google Scholar
  26. Salmon, N.: 1995, Being in two minds: Belief with doubt, Noûs 29, 1-20.Google Scholar
  27. Yi, B.: 1999, Is two a property?, J. Philos. 96, 163-190.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Graham Priest
    • 1
  1. 1.Department of PhilosophyUniversity of MelbourneMelbourneAustralia

Personalised recommendations