Water, Air, and Soil Pollution

, Volume 140, Issue 1–4, pp 261–277 | Cite as

Amendment-Induced Immobilization of Lead in a Lead-Spiked Soil: Evidence from Phytotoxicity Studies

  • Wouter Geebelen
  • Jaco Vangronsveld
  • Domy C. Adriano
  • Robert Carleer
  • Herman Clijsters
Article

Abstract

Lead immobilization was evaluated on soils spiked with increasingconcentrations of Pb (as Pb-acetate) using the following soilamendments: bentonite, zeolite, cyclonic ash, compost, lime,steelshot, and hydroxyapatite. The immobilization efficacy of theamendments was evaluated according to the following criteria:Ca(NO3)2-extractable Pb as an indicator of Pbphytoavailability, morphological and enzymatic parameters of beanplants (Phaseolus vulgaris) as indicator of phytotoxicity, and Pb concentration in edible tissue of lettuce (Lactuca sativa). The lowest reductions in Ca(NO3)2-extractablesoil Pb occurred when bentonite and steelshot were applied. Phytotoxicity from application of steelshot was confounded by toxic amounts of Fe and Mn released from the by-product which killed the lettuce seedlings. Addition of zeolite induced poorplant growth independent of Pb concentration due to its adverseeffect on soil structure. Substantial reductions in Ca(NO3)2-extractable Pb were observed when cyclonic ash, lime, compost and hydroxyapatite were applied. In general,these amendments reduced Pb phytotoxicity concomitant with reduced Pb concentration in lettuce tissue. Cyclonic ash, limeand compost further improved plant growth and reduced oxidativestress at low soil Pb concentrations due to soil pH increase mitigating Al or Mn toxicity.

heavy metals immobilization Lactuca sativa lead oxidative stress Phaseolus vulgaris phytoavailability phytotoxicity plant response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano, D. C.: 2001, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer-Verlag, New York, 867 pp.Google Scholar
  2. Bassuk, N. L.: 1986, 'Reducing Lead Uptake in Lettuce', Hortscience 21(4), 993–995.Google Scholar
  3. Berti, W. R. and Cunningham, S. D.: 1997, 'In-Place Inactivation of Pb in Pb-Contaminated Soils', Environ. Sci. Technol. 31, 1359–1364.Google Scholar
  4. Berti, W. R., Cunningham, S. D. and Cooper, E. M.: 1998, 'Case Studies in the Field – in Place Inactivation and Phytorestoration of Pb Contaminated Sites', in J. Vangronsveld and S. D. Cunningham (eds), Metal Contaminated Soils: In Situ Inactivation and Phytorestoration, Springer, New York, U.S.A., pp. 235–248.Google Scholar
  5. Boisson, J., Ruttens, A., Mench, M. and Vangronsveld, J.: 1999, 'Evaluation of Hydroxyapatite as a Metal Immobilizing Soil Additive for the Remediation of Polluted Soils. Part 1. Influence of Hydroxyapatite on Metal Exchangeability in Soil, Plant Growth and Plant Metal Accumulation', Environ. Pollut. 104, 225–233.Google Scholar
  6. Chlopecka, A. and Adriano, D. C.: 1997a, 'Influence of Zeolite, Apatite and Fe-Oxide on Cd and Pb Uptake by Crops', Sci. Total Environ. 207(2–3), 195–206.Google Scholar
  7. Chlopecka, A. and Adriano, D. C.: 1997b, 'Mimicked In-Situ Stabilization of Lead-Polluted Soils', in I. K. Iskandar, S. E. Hardy, A. C. Chang and G. M. Pierzynski (eds), Proceedings of the 4th International Conference on Biogeochemistry of Trace Elements, Berkeley, U.S.A., 23–26 June 1997, pp. 423–424.Google Scholar
  8. Cotter-Howells, J.: 1996, 'Lead Phosphate Formation in Soils', Environ. Pollut. 93, 9–16.Google Scholar
  9. Ewers, U.: 1991, 'Standards, Guidelines, and Legislative Regulations Concerning Metals and Their Compounds' in E. Merian (ed.), Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, VCH, Weinheim, Germany, pp. 687–711.Google Scholar
  10. Gworek, B.: 1992, 'Lead Inactivation in Soils by Zeolites', Plant Soil 143, 71–74.Google Scholar
  11. Laperche, V., Logan, T. J., Gaddam, P. and Traina, S. J.: 1997, 'Effect of Apatite Amendments on Plant Uptake of Lead from Contaminated Soil', Environ. Sci. Technol. 31, 2745–2753.Google Scholar
  12. Laperche, V., Traina, S. J., Gaddam, P. and Logan, T. J.: 1996, 'Chemical and Mineralogical Characterizations of Pb in a Contaminated Soil: Reactions with Synthetic Apatite', Environ. Sci. Technol. 30, 3321–3326.Google Scholar
  13. Ma, L. Q.: 1996, 'Factors Influencing the Effectiveness and Stability of Aqueous Lead Immobilization by Hydroxyapatite', J. Environ. Qual. 25, 1420–1429.Google Scholar
  14. Ma, L. Q. and Rao, G. N.: 1997, 'Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils', J. Environ. Qual. 26, 788–794.Google Scholar
  15. Ma, L. Q., Choate, A. L. and Rao, G. N.: 1997, 'Effects of Incubation and Phosphate Rock on Lead Extractability and Speciation in Contaminated Soils', J. Environ. Qual. 26, 801–807.Google Scholar
  16. Ma, Q. Y., Logan, T. J. and Traina, S. J.: 1994, 'Effects of NO3, Cl,SO42–, and CO32– on Pb Immobilization by Hydroxyapatite', Environ. Sci. Technol. 23, 408–418.Google Scholar
  17. Ma, Q. Y., Logan, T. J. and Traina, S. J.: 1995, 'Lead Immobilization from Aqueous Solutions and Contaminated Soils using Phosphate Rocks', Environ. Sci. Technol. 29, 1118–1126.Google Scholar
  18. Ma, Q. Y., Traina, S. J. and Logan, T. J.: 1993, 'In Situ Lead Immobilization by Apatite', Environ. Sci. Technol. 27, 1803–1810.Google Scholar
  19. Manceau, A., Charlet, L. and Boisset, M. C.: 1992, 'Sorption and Speciation of Heavy Metals on Hydrous Fe and Mn Oxides. From Microscopic to Macroscopic', Appl. Clay Sci. 7, 201–223.Google Scholar
  20. Marschner, H.: 1995, Mineral Nutrition of Higher Plants, Academic Press, London, 889 pp.Google Scholar
  21. Mench, M. J., Didier, V. L., Löffler, M., Gomez, A. and Masson, D.: 1994a, 'A Mimicked In-Situ Remediation Study of Metal-Contaminated Soils with Emphasis on Cadmium and Lead', J. Environ. Qual. 23, 58–63.Google Scholar
  22. Mench, M., Vangronsveld, J., Didier, V. and Clijsters, H.: 1994b, 'Evaluation of Metal Mobility, Plant Availability and Immobilization by Chemical Agents in a Limed-Silty Soil', Environ. Pollut. 86, 279–286.Google Scholar
  23. Mench, M., Vangronsveld, J., Lepp, N. W. and Edwards, R.: 1998, 'Physico-Chemical Aspects and Efficiency of Trace Element Immobilization by Soil Amendments', in J. Vangronsveld and S. D. Cunningham (eds), Metal Contaminated Soils: In Situ Inactivation and Phytorestoration, Springer, New York, pp. 151–182.Google Scholar
  24. Page, A. L. and Chang, A. C.: 1993, 'Lead Contaminated Soils: Priorities for Remediation?', Hazard. Waste Hazard. Mater. 10(1), 1–2.Google Scholar
  25. Rebedea, I. and Lepp, N. W.: 1995, 'The Use of Synthetic Zeolites to Reduce Plant Metal Uptake and Phytotoxicity in Two Polluted Soils', Environ. Geochem. Health 16, 167–177.Google Scholar
  26. Ruby, M. V., Davis, A. and Nicholson, A.: 1994, 'In Situ Formation of Lead Phosphates in Soils as a Method to Immobilize Lead', Environ. Sci. Technol. 28, 646–654.Google Scholar
  27. Sauvé, S., Mcbride, M. B. and Hendershot, W. H.: 1997, Speciation of Lead in Contaminated Soils', Environ. Pollut. 98, 149–155.Google Scholar
  28. Sappin-Didier, V.: 1995, 'Utilisation de Composes Inorganiques pour Diminuer les Flux De Métaux dans Deux Agrosystemes Pollués: Étude des Mechanismes Impliques par L'emploi d'un Compose du Fer', Ph.D. Thesis, Université De Bordeaux, 189 pp.Google Scholar
  29. Scialdone, R., Scognamiglio, D. and Ramunni, A. U.: 1980, 'The Short and Medium Term Effects of Organic Amendments on Lead Availability', Water, Air, and Soil Pollut. 13, 267–274.Google Scholar
  30. Shanableh, A. and Kharabsheh, A.: 1996, 'Stabilization of Cd, Ni and Pb in Soil Using Natural Zeolite', J. Hazard. Mater. 45, 207–217.Google Scholar
  31. Van Assche, F., Cardinaels, C. and Clijsters, H.: 1988, 'Induction of Enzyme Capacity in Plants As A Result of Heavy Metal Toxicity: Dose-Response Relations in Phaseolus Vulgaris L., Treated with Zinc and Cadmium', Environ. Pollut. 52, 103–115.Google Scholar
  32. Van Assche, F. and Clijsters, H.: 1990a, 'A Biological Test System for the Evaluation of the Phytotoxicity of Metal-Contaminated Soils', Environ. Pollut. 66, 157–172.Google Scholar
  33. Van Assche, F. and Clijsters, H.: 1990b, 'Effects of Metals on Enzyme Activity in Plants', Plant Cell Environ. 13, 195–206.Google Scholar
  34. Vangronsveld, J. and Clijsters, H.: 1992, 'A Biological Test System for the Evaluation of Metal Phytotoxicity and Immobilization by Additives in Metal Contaminated Soils', in E. Merian and W. M. Haerdi (eds), Metal Compounds in Environment and Life, Vol. 4, Science and Technology Letters, Middlesex, U.K., pp. 117–125.Google Scholar
  35. Vangronsveld, J. and Clijsters, H.: 1994, 'Toxic Effects of Metals', in M. E. Farago (ed.), Plans and the Chemical Elements, VCH Verlagsgesellschaft, Weinheim, Germany, pp. 149–177.Google Scholar
  36. Vangronsveld, J., Van Assche, F. and Clijsters, H.: 1990, 'Immobilization of Heavy Metals in Polluted Soils by Application of a Modified Alumino-Silicate: Biological Evaluation', in J. Barcelo (ed.), Proceedings of the 4th International Conference on Environmental Contamination, Barcelona, Spain, 1–4 October 1990, pp. 283–285.Google Scholar
  37. Vangronsveld, J., Sterckx, J., Van Assche, F. and Clijsters, H.: 1993, 'Rehabilitation Studies on an Old Non-Ferrous Waste Dumping Ground; Effects of Metal Immobilization and Revegetation', in Proceedings of the 9th International Conference on Heavy Metals in the Environment, Toronto, Canada, 12–16 September 1993, pp. 363–366.Google Scholar
  38. Vangronsveld, J., Van Assche, F. and Clijsters, H.: 1995, 'Reclamation of a Bare Industrial Area Contaminated by Non-Ferrous Metals: In Situ Metal Immobilization and Revegetation', Environ. Pollut. 87, 51–59.Google Scholar
  39. Vangronsveld, J., Colpaert, J. and Van Tichelen, K.: 1996, 'Reclamation of a Bare Industrial Area Contaminated by Non-Ferrous Metals: Physico-Chemical and Biological Evaluation of the Durability of Soil Treatment and Revegetation', Environ. Pollut. 94, 131–140.Google Scholar
  40. Vangronsveld, J. and Cunningham, S. D.: 1998, 'Introduction to the Concepts', in J. Vangronsveld and S. D. Cunningham (eds), Metal Contaminated Soils: In Situ Inactivation and Phytorestoration, Springer, New York, pp. 1–15.Google Scholar
  41. Wessolek, G. and Fahrenhorst, C.: 1994, 'Immobilization of Heavy Metals in a Polluted Soil of a Sewage Farm by Application of a Modified Aluminosilicate: A Laboratory and Numerical Displacement Study', Soil Technol. 7, 221–232.Google Scholar
  42. Zimdahl, R. L. and Foster, J. M.: 1976, 'The Influence of Applied Phosphorus, Manure, or Lime on Uptake of Lead From Soil', J. Environ. Qual. 5, 31–34.Google Scholar
  43. Zhang, P., Ryan, J. A. and Bryndzia, L. T.: 1997, 'Pyromorphyte Formation from Goethite Adsorbed Lead', Environ. Sci. Technol. 31, 2673–2678.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Wouter Geebelen
    • 1
    • 2
  • Jaco Vangronsveld
    • 1
  • Domy C. Adriano
    • 2
  • Robert Carleer
    • 3
  • Herman Clijsters
    • 1
  1. 1.Environmental Biology, Centre for Environmental SciencesLimburgs Universitair CentrumDiepenbeekBelgium
  2. 2.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenU.S.A.
  3. 3.Environmental Chemistry, Centre for Environmental SciencesLimburgs Universitair CentrumDiepenbeekBelgium

Personalised recommendations