Advertisement

Bioscience Reports

, Volume 22, Issue 2, pp 197–224 | Cite as

Liposome Clearance

  • Tatsuhiro Ishida
  • Hideyoshi HarashimaEmail author
  • Hiroshi Kiwada
Article

Abstract

The clearance rate of liposomal drugs from the circulation is determined by the rate and extent of both drug release and uptake of liposomes by cells of the mononuclear phagocyte system (MPS). Intravenously injected liposomes initially come into contact with serum proteins. The interaction of liposomes with serum proteins is thought to play a critical role in the liposome clearance. Therefore, in this review, we focus on the role of serum proteins, so-called opsonins, that enhance the clearance of liposomes, when bound to liposomes. In addition to opsonin-dependent liposome clearance, opsonin-independent liposome clearance is also reviewed. As opposed to the conventional (non-surface modification) liposomes, we briefly address the issue of the accelerated clearance of PEGylated-liposomes (sterically stabilized liposomes, long-circulating liposomes) on repeated injection, a process that has recently been observed.

Liposomes clearance serum protein opsonins mononuclear phagocyte system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Patel, H. M. (1992) Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit. Rev. Ther. Drug Carrier Syst. 9:39-90.Google Scholar
  2. 2.
    Devine, D. V. and Marjan, J. M. (1997) The role of immunoproteins in the survival of liposomes in the circulation. Crit. Rev. Ther. Drug. Carrier Syst. 14:105-131.Google Scholar
  3. 3.
    Moghimi, S. M. and Patel, H. M. (1998) Serum mediated recognition of liposomes by phagocytic cells of the reticuloendotherial system: the concept of tissue specificity. Adv. Drug Deliv. Rev. 32:45-60.Google Scholar
  4. 4.
    Rodrigueza, W. V., Phillips, M. C., and Williams, K. J. (1998) Structural and metabolic consequences of liposome-lipoprotein interactions. Adv. Drug Deliv. Rev. 32.Google Scholar
  5. 5.
    Senior, J. H. (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 3:123-193.Google Scholar
  6. 6.
    Liu, D., Mori, A., and Huang, L. (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104:95-101.Google Scholar
  7. 7.
    Kimberly, R. P. (1983) Phagocytosis by the mononuclear phagocytes system and immune diseases. Am. J. Med. 74:481-493.Google Scholar
  8. 8.
    Absolom, D. R. (1986) Opsonins and dysopsonins: an overview. Methods Enzymol. 132:281-318.Google Scholar
  9. 9.
    Senior, J. H. (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 3:123-193.Google Scholar
  10. 10.
    Black, C. D. and Gregoriadis, G. (1976) Interactions of liposomes with blood plasma proteins. Biochem. Soc. Trans. 4:253-256.Google Scholar
  11. 11.
    Bonte, F. and Juliano, R. L. (1986) Interactions of liposomes with serum proteins. Chem. Phys. Lipids 40:359-372.Google Scholar
  12. 12.
    Alving, C. R., Richards, R. L., and Guirguis, A. A. (1977) Cholesterol-dependent human complement activation resulting in damage to liposomal model membrane. J. Immunol. 118:342-347.Google Scholar
  13. 13.
    Chonn, A., Cullis, P. R., and Devine, D. V. (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146:4234-4241.Google Scholar
  14. 14.
    Chonn, A., Semple, S. C., and Cullis, P. R. (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 267:18759-18765.Google Scholar
  15. 15.
    Funato, K., Yoda, R. and Kiwada, H. (1992) Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in rat fresh plasma. Biochim. Biophys. Acta 1103:198-204.Google Scholar
  16. 16.
    Derksen, J. T. P., Morselt, H. W. M., Kalicharan, D., Hulstaert, C. E., and Scherphof, G. L. (1987) Interaction of immunoglobulin-coated liposomes with rat liver macrophages in vitro. Exp. Cell Res. 168:105-115.Google Scholar
  17. 17.
    Lee, K. D., Hong, K., and Papahadjopoulos, D. (1992) Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim. Biophys. Acta 1103:185-197.Google Scholar
  18. 18.
    Moghimi, S. M. and Patel, H. M. (1988) Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett. 233:143-147.Google Scholar
  19. 19.
    Lee, K. D., Nir, S., and Papahadjopoulos, D. (1993) Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 32:889-899.Google Scholar
  20. 20.
    Tyrell, D. A., Richardson, V. J., and Ryman, B. E. (1977) The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim. Biophys. Acta 497:469-480.Google Scholar
  21. 21.
    Kiwada, H., Miyajima, Y., and Kalto, Y. (1987) Studies on the uptake of mechanism of liposomes by perfused rat liver. II. An indispensable factor for liver uptake in serum. Chem. Pharm. Bull. 35:1189-1195.Google Scholar
  22. 22.
    Harashima, H., Sakata, K., Funato, K., and Kiwada, H. (1994) Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11:402-406.Google Scholar
  23. 23.
    Matsuo, H., Funato, K., Harashima, H., and Kiwada, H. (1994) The complement-but not mannose receptor-mediated phagocytosis is involved in hepatic uptake of cetylmannoside-modified liposomes in situ. J. Drug. Target. 2:141-146.Google Scholar
  24. 24.
    Liu, D., Hu, Q. G., and Song, Y. K. (1995) Liposome clearance from blood: different animal species have different mechanisms. Biochim. Biophys. Acta 124:277-284.Google Scholar
  25. 25.
    Liu, D., Song, Y. K., and Liu, F. (1995) Antibody dependent, complement mediated liver uptake of liposomes containing GM1 . Pharm. Res. 12:1775-1780.Google Scholar
  26. 26.
    Harashima, H., Ohnishi, Y., and Kiwada, H. (1992) In vivo evaluation of the effect of the size and opsonization on the hepatic extraction of liposomes in rats: an application of Oldendorf method. Biopharm. Drug Disposit. 13:549-553.Google Scholar
  27. 27.
    Chonn, A., Semple, S. C., and Cullis, P. R. (1995) β2-glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of ''non-self'' particles. J. Biol. Chem. 270:25845-25849.Google Scholar
  28. 28.
    Semple, A., Chonn, A., and Cullis, P. R. (1998) Interaction of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behavior in vivo. Adv. Drug Deliv. Rev. 32:3-13.Google Scholar
  29. 29.
    Nishikawa, K., Arai, H., and Inoue, K. (1990) Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J. Biol. Chem. 265:5226-5231.Google Scholar
  30. 30.
    Dijkstra, J., Van Galen, M., and Scherphof, G. L. (1984) Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro. Biochem. Biophys. Acta 804:58-67.Google Scholar
  31. 31.
    Romero, E. L., Morilla, M. J., Regts, J., Koning, G. A., and Scherphof, G. L. (1999) On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett. 448:193-196.Google Scholar
  32. 32.
    Scherphof, G. L., Daemen, T., Romero, E. L., and Kamps, J. A. A. M. (2000) Liposome elimination by non-phagocytic cells of the liver. J. Liposome Res. 10:431-442.Google Scholar
  33. 33.
    Allen, T. M. (1981) A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim. Biophys. Acta 640:385-397.Google Scholar
  34. 34.
    Senior, J., Gregoriadis, G., and Mitropoulos, K. (1983) Stability and clearance of small unilamellar liposomes: studies with normal and lipoprotein-deficient mice. Biochim. Biophys. Acta 760:111-118.Google Scholar
  35. 35.
    Patel, H. M., Tuzel, N. S., and Ryman, B. E. (1983) Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen. Biochim. Biophys. Acta 761:142-151.Google Scholar
  36. 36.
    Wetterau, J. R. and Jonas, A. (1983) Factors affecting the size of complexes of dipalmitoylphosphatidylcholine with human apolipoprotein A-1. J. Biol. Chem. 258:2637-2643.Google Scholar
  37. 37.
    Klausner, R. D., Blumenthal, R., Innnerarity, T., and Weistein, J. N. The interaction of apolipoprotein A-1 with small unilamellar vesicles of L-alpha-dipalmitoylphosphatidylcholine. J. Biol. Chem. 260:13719-13727.Google Scholar
  38. 38.
    Damen, J., Regts, J., and Scherphof, G. L. (1982) Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein: Partial purification of a transfer stimulating factor using a rapid transfer assay. Biochim. Biophys. Acta 712:444-452.Google Scholar
  39. 39.
    Damen, J., Dijkstra, J., Regts, J., and Scherphof, G. (1980) Effect of lipoprotein-free plasma on the interaction of human plasma high density lipoprotein with egg yolk phosphatidylcholine liposomes. Biochim. Biophys. Acta 620:90-99.Google Scholar
  40. 40.
    Scherphof, G. L. and Morselt, H. (1984) On the size-dependent disintegration of small unilamellar phosphatidylcholine vesicles in rat plasma: evidence of complete loss of vesicle structure. Biochem. J. 221:423-429.Google Scholar
  41. 41.
    Shahrokh, Z. and Nichols, A. V. (1982) Particle size interconversion of human low-density lipoproteins during incubation of plasma with phosphatidylcholine vesicles. Biochim. Biophys. Res. Commun. 108:888-895.Google Scholar
  42. 42.
    Comiskey, S. J. and Heath, T. D. (1990) Serum-induced leakage of negatively charged liposomes at nanomolar lipid concentrations. Biochemistry 29:3626-3631.Google Scholar
  43. 43.
    Muller-Eberhard, H. J. (1986) The membrane attack complex of complement. Annu. Rev. Immunol. 4:503-528.Google Scholar
  44. 44.
    Malinsky, J. A. and Nelsestuen, G. L. (1989) Membrane permeability to macromolecules mediated by the membrane attack complex. Biochemistry 28:61-70.Google Scholar
  45. 45.
    Damen, J., Regts, J. and Scherphof, G. L. (1981) Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins: dependence on cholesterol and phospholipid composition. Biochim. Biophys. Acta 665:538-545.Google Scholar
  46. 46.
    Hunt, C. A. (1982) Liposomes disposition in vivo. V. Liposomes stability in plasma and implications for drug carrier function. Biochim. Biophys. Acta 719:450-463.Google Scholar
  47. 47.
    Senior, J. and Gregoriadis, G. (1982) Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett. 145:109-114.Google Scholar
  48. 48.
    Gregoriadis, G. and Senior, J. (1980) The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett. 119:43-46.Google Scholar
  49. 49.
    Kirby, J. and Gregoriadis, G. (1981) Plasma-induced release of solutes from small unilamellar liposomes is associated with pore formation in the bilayers. Biochem. J. 119:251-254.Google Scholar
  50. 50.
    Marjan, J., Xie, Z., and Devine, D. (1994) Liposome-induced activation of the classical complement pathway does not require immunoglobulin. Biochim. Biophys. Acta 1192:35-44.Google Scholar
  51. 51.
    Devine, D. V., Wong, K., Serrano, K., Chonn, A., and Cullis, P. R. (1994) Liposome-complement interactions in rat serum: Implications for liposome survival studies. Biochim. Biophys. Acta 1191:43-51.Google Scholar
  52. 52.
    Harashima, H., Huong, T. M., Ishida, T., Manabe, Y., Matsuo, H., and Kiwada, H. (1996) Synergistic effect between size and cholesterol content in the enhanced hepatic uptake clearance of liposomes through complement activation in rats. Pharm. Res. 13:1704-1709.Google Scholar
  53. 53.
    Dijkstra, J., Van Galen, W. J. M., Hulstaert, C. E., Kalicharan, D., Roedink, F. H., and Scherphof, G. L. (1984) Interaction of liposomes with Kupffer cells in vitro. Exp. Cell Res., 150:161-176.Google Scholar
  54. 54.
    Dijkstra, J., Van Galen, M., Regts, D., and Scherphof, G. (1985) Uptake and processing of liposomal phospholipids by Kupffer cells in vitro. Eur. J. Biochem. 148:391-397.Google Scholar
  55. 55.
    Huong, T. M., Harashima, H., and Kiwada, H. (1998) Complement dependent and independent liposome uptake be peritoneal macrophages: cholesterol content dependency. Biol. Pharm. Bull. 21:969-973.Google Scholar
  56. 56.
    Harashima, H. and Kiwada, H. (1996) Studies on the mechanism of uptake of liposomes using an isolated perfused liver system. J. Liposome Res. 6:61-75.Google Scholar
  57. 57.
    Harashima, H., Matsuo, H., and Kiwada, H. (1998) Identification of proteins mediating clearance of liposomes using a liver perfusion system. Adv. Drug Deliv. 32:61-79.Google Scholar
  58. 58.
    Liu, D., Liu, F., and Song, Y. K. (1995) Recognition and clearance of liposomes containing phosphatidylserine are mediated by serum opsonin. Biochim. Biophys. Acta 1235:140-146.Google Scholar
  59. 59.
    Liu, F. and Liu, D. X. (1996) Serum independent liposome uptake by mouse liver. Biochim. Biophys. Acta 127:5-11.Google Scholar
  60. 60.
    Oja, C. D., Semple, S. C., Chonn, A., and Cullis, P. R. (1996) Influence of dose on liposome clearance: critical role of blood proteins. Biochim. Biophys. Acta 1281:31-37.Google Scholar
  61. 61.
    Ishida, T., Funato, K., Kojima, S., Yoda, R., and Kiwada, H. (1997) Enhancing effect of cholesterol on the elimination of liposomes from circulation is mediated by complement activation. Int. J. Pharm. 156:27-37.Google Scholar
  62. 62.
    Ishida, T., Kojima, H., Harashima, H., and Kiwada, H. (2000) Biodistribution of liposomes and C3 fragments associated with liposomes: evaluation of their relationship. Int. J. Pharm. 205:183-193.Google Scholar
  63. 63.
    Ishida, T., Yasukawa, K., Kojima, H., Harashima, H., and Kiwada, H. (2001) Effect of cholesterol content in activation of the classical versus the alternative pathway of rat complement system induced by hydrogenated egg phosphatidylcholine-based liposomes. Int. J. Pharm. 224:69-79.Google Scholar
  64. 64.
    Huong, T. M., Harashima, H., and Kiwada, H. (1999) In vivo studies on the role of complement in the clearance of liposomes in rats and guinea pigs. Biol. Pharm. Bull. 22:515-520.Google Scholar
  65. 65.
    Huong, T. M., Ishida, T., Harashima, H., and Kiwada, H. (2001) The complement system enhances the clearance of phosphatidylserine (PS)-liposomes in rat and guinea pig. Int. J. Pharm. 215:197-205.Google Scholar
  66. 66.
    Szebeni, J., Wassef, N. M., Spielberg, H., Rudolph, A. S., and Alving, C. R. (1994) Complement activation in rats by liposomes and liposomes-encapsulated hemoglobin: evidence for anti-lipid antibodies and alternative pathway activation. Biochem. Biophys. Res. Commun. 205:255-263.Google Scholar
  67. 67.
    Cunningham, C. M., Kingzette, M., Richards, R. L., Alving, C. R., Lint, T. F., and Gewurz, H. (1979) Activation of human complement by liposomes: a model for membrane activation of the alternative pathway. J. Immunol. 122:1237-1242.Google Scholar
  68. 68.
    Volanakis, J. E. and Narkates, A. J. (1981) Interaction of C-reactive protein with artificial phosphatidylcholine bilayers and complement. J. Immunol. 126:1820-1825.Google Scholar
  69. 69.
    Richards, G. L., Gewurz, H., Siegel, J., and Alving, C. R. (1979) Interaction of CRP and complement with liposomes, II. Influence of membrane composition. J. Immunol. 122:1185-1189.Google Scholar
  70. 70.
    Scieszka, J. F., Maggiora, L. L., Wright, S. D., and Cho, M. J. (1991) Role of complements C3 and C5 in the phagocytosis of liposomes by human neutrophils. Pharm. Res. 8:65-69.Google Scholar
  71. 71.
    Wright, S. D. and Silverstwin, S. C. (1982) Tumor-promoting phorbol esters stimulate C3b and C3bi receptor-mediated phagocytosis in cultured human monocytes. J. Exp. Med. 156:1149-1164.Google Scholar
  72. 72.
    Matsuo, H., Yamashita, C., Akiyama, K., and Kiwada, H. (1995) Effect of cetylmannoside modification on the alternative complement pathway activation in rat serum. Biol. Pharm. Bull. 18:581-585.Google Scholar
  73. 73.
    Liu, D., Liu, F., and Song, Y. K. (1995) Monosialoganglioside GM1 shortens the blood circulation time in rats. Pharm. Res. 12:508-512.Google Scholar
  74. 74.
    Allen, T. M. and Chonn, A. (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223:42-46.Google Scholar
  75. 75.
    Harashima, H., Hiraiwa, T., Ochi, Y., and Kiwada, H. (1995) Size dependent liposome degradation in blood: in vivo/in vitro correlation by kinetic modeling. J. Drug Targeting 3:253-261.Google Scholar
  76. 76.
    Morgan, B. P. (1990) In: The Complement System. Academic Press, London, pp. 10-11.Google Scholar
  77. 77.
    Metzger, H. (1991) Fc receptors and membrane immunoglobulin. Curr. Opin. Immunol. 3:40-46.Google Scholar
  78. 78.
    Rossi, J. D. and Wallace, B. A. (1983) Binding of fibronectin to phospholipid vesicles. J. Biol. Chem. 258:3327-3331.Google Scholar
  79. 79.
    Water, L. D. V., Destree, A. T., and Hynes, R. O. (1983) Fibronectin binds to some bacteria but does not promote their uptake by phagocytic cells. Science 220:201-204.Google Scholar
  80. 80.
    Falcone, D. J. (1986) Fluorescent opsonization assay: binding of plasma fibronectin to fibrinderivatized fluorescent particles does not change their uptake by macrophages. J. Leukocyte Biol. 39:1-12.Google Scholar
  81. 81.
    Murai, M., Aramki, Y., and Tsuchiya, S. (1995) Identification of the serum factor required for liposome primed activation of mouse peritoneal macrophages: modified α2-macroglobulin enhances Fc gamma receptor mediated phagocytosis of opsonized sheep red blood cells. Immunology 86:64-70.Google Scholar
  82. 82.
    Reid, K. B. M. (1986) Activation and control of the complement system. Essays Biochem. 22:27-68.Google Scholar
  83. 83.
    Van de Winkel, J. G. J., and Capel, J. A. Overview: Fc receptors. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol. Today 14: 215-221.Google Scholar
  84. 84.
    Yokota, A., et al. (1992) Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc. Natl. Acad. Sci. USA 89: 5030-5034.Google Scholar
  85. 85.
    Dewer, S. K., Titus, J. A., Delisi, L., and Segal, D. M. (1981) Mechanism of binding of multivalent immune complex to Fc receptors. Biochemistry 20:6335-6340.Google Scholar
  86. 86.
    Unkeless, J. C. (1989) Functional and heterogeneity of human Fc receptors for immunoglobulin G. J. Clin. Invest. 83:355-361.Google Scholar
  87. 87.
    Clarkson, S. B. et al. (1986) Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J. Exp. Med. 164:474-489.Google Scholar
  88. 88.
    McNeil, H. P., Simpson, R. J., Chesterman, C. N., and Krilis, S. A. (1990) Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: α2-glycoprotein I (apolipoprotein H). Proc. Natl. Acad. Sci. USA 87:4120-4124.Google Scholar
  89. 89.
    Van Oss, C. J., Gillman, C. F., Bronson, P. M., and Border, J. R. (1974) Phagocytosis-inhibiting properties of human serum α-1 acid glycoprotein. Immunol. Commun. 3:321-328.Google Scholar
  90. 90.
    Moghimi, S. M. and Patel, H. S. (1989) Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim. Biophys. Acta 984:384-387.Google Scholar
  91. 91.
    Moghimi, S. M. and Patel, H. M. (1993) Serum factors that regulate phagocytosis of liposomes by Kupffer cells. Biochem. Soc. Trans. 21:128S.Google Scholar
  92. 92.
    Moghimi, S. M. and Patel, H. M. (1990) Calcium as a possible modulator or Kupffer cell phagocytic function by regulating liver-specific opsonic activity. Biochim. Biophys. Acta 1028:304-308.Google Scholar
  93. 93.
    Schwartz, R. S., Tanaka, Y., Fidler, I. J., Chiu, D., Lubin, B., and Schroit, A. J. (1985) Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J. Clin. Invest. 75:1965-1972.Google Scholar
  94. 94.
    Op den Kamp, J. A. F. (1979) Lipid asymmetry in membranes. Ann. Rev. Biochem. 48:47-71.Google Scholar
  95. 95.
    Lubin, B., Chiu, D., Bastacky, J., Roelofsen, B., and Van Deenen, L. L. M. (1981) Abnormalities in membrane phospholipid organization in sickled erythrocytes. J. Clin. Invest. 67:1643-1649.Google Scholar
  96. 96.
    Schroit, A. J., Madsen, J. W., and Tanaka, Y. (1985) In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membrane. J. Biol. Chem. 260:5131-5138.Google Scholar
  97. 97.
    Savil, J., Fadok, V., Henson, P., and Haslett, C. (1993) Phagocyte recognition of cells undergoing of cells undergoing apoptosis. Immunol. Today 14:131-136.Google Scholar
  98. 98.
    Tanaka, Y. and Schroit, A. J. (1983) Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells: recognition by autologous macrophages. J. Biol. Chem. 258:11335-11343.Google Scholar
  99. 99.
    Allen, T. M., Austin, G. A., Chonn, A., Lin, L., and Lee, K. C. C. (1991) Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim. Biophys. Acta 1061:56-64.Google Scholar
  100. 100.
    Roerdink, R., Regts, J., Van Leeuwen, B., and Scherphof, G. (1984) Intrahepatic uptake and processing of intravenously injected small unilamellar phospholipid vesicles in rats. Biochim. Biophys. Acta 770:195-202.Google Scholar
  101. 101.
    Spanjer, H. H., Van Galen, M., Roerink, F. H., Regts, J., and Scherphof, G. L. (1986) Intrahepatic distribution of small unilamellar liposomes as a function of liposomal lipid composition Biochim. Biophys. Acta 863:224-230.Google Scholar
  102. 102.
    Daemen, T. et al. (1997) Different intrahepatic distribution of phosphatidylglycerol and phosphatidylserine liposomes. Hepatology 26:416-423.Google Scholar
  103. 103.
    Greaves, D. R., Gough, P. J., and Gordon, S. (1998) Recent progress on defining the role of scavenger receptors in lipid transport, athreosclerosis and host defence. Curr. Opin Lipidol. 9:425-432.Google Scholar
  104. 104.
    Kodama, T., Doi, T., Suzuki, H., Takahashi, K., Wada, Y., and Gordon, S. (1996) Collagenous macrophages scavenger receptors. Curr. Opin. Lipidol. 7:287-291.Google Scholar
  105. 105.
    Krieger, M. and Herz, J. (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63:601-637.Google Scholar
  106. 106.
    da Silva, R. P., Platt, N., de Villiers, W. J. S., and Gordon, S. (1996) Membrane molecules and macrophage endocytosis: Scavenger receptor and macrosialin as markers of plasma-membrane and vacuolar functions. Biochim. Soc. Trans. 24:220-224.Google Scholar
  107. 107.
    Goldstein, J. L., Ho, Y. K., Basu, S. K., and Brown, M. S. (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 76:333-337.Google Scholar
  108. 108.
    Lee, K. D., Pitas, R. E., and Papahadjopoulos, D. (1992) Evidence that the scavenger receptor is not involved in the uptake of negatively charged liposomes by cells. Biochim. Biophys. Acta 1111:1-6.Google Scholar
  109. 109.
    109._ Rigotti, A., Acton, S. L., and Krieger, M. (1995) The class B scavenger SR-B1 and CD-36 are receptors for anionic phospholipids. J. Biol. Chem. 270:16221-16224.Google Scholar
  110. 110.
    Acton, S. L., Scherer, P. E., Lodish, H. F., and Krieger, M. (1994) Expression cloning of SR-B1, a CD36 related class B scavenger receptor. J. Biol. Chem. 269:21003-21009.Google Scholar
  111. 111.
    Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., and Henson, P. M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207-2216.Google Scholar
  112. 112.
    Woodle, M. and Lasic, D. (1992) Sterically stabilized liposomes. Biochim. Biophys. Acta. 1113:171-199.Google Scholar
  113. 113.
    Harashima, H., Komatsu, S., Kojima, S., Yanagi, C., Morioka, Y., Naito, M., and Kiwada, H. (1996) Species difference in the disposition of liposomes among mice, rats, and rabbits: allomeric relationship and species dependent hepatic uptake mechanism. Pharm. Res. 13:1049-1054.Google Scholar
  114. 114.
    Abra, R. M. and Hunt, C. A. (1981) Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim. Biophys. Acta 666:493-503.Google Scholar
  115. 115.
    Dams, E. T. M. et al. (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharm. Exp. Ther. 292:1071-1079.Google Scholar
  116. 116.
    Laverman, P. et al. (2001) Factors affecting the accelerated blood clearance of polyethylene glycolliposomes upon repeated injection. J. Pharm. Exp. Ther. 298:607-612.Google Scholar
  117. 117.
    Laverman, P., Carstens, M. G., Storm, G., and Moghimi, S. M. (2001) Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncology. Biochim. Biophys. Acta 1526:227-229.Google Scholar
  118. 118.
    Liu, S., Ishida, T., and Kiwada, H. (1997) Effect of serum components from different species on destabilizing hydrogenated phosphatidylcholine-based liposomes. Biol. Pharm. Bull. 20:874-880.Google Scholar
  119. 119.
    Bradley, A. J., Devine, D. V., Ansell, S. M., Janzen, J., and Brooks, D. E. (1998) Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipods. Arch. Biochem. Biophys. 357:185-194.Google Scholar
  120. 120.
    Price, M. E., Cornelius, R. M., and Brash, J. L. (2001) Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim. Biophys. Acta 1512:191-205.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Tatsuhiro Ishida
    • 1
  • Hideyoshi Harashima
    • 2
    Email author
  • Hiroshi Kiwada
    • 1
  1. 1.Faculty of Pharmaceutical Sciences, Department of Pharmakokinetics and BiopharmaceuticsThe University of TokushimaTokushimaJapan
  2. 2.Laboratory for Molecular Design of Pharmaceutics, Graduate School of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations