Advertisement

General Relativity and Gravitation

, Volume 34, Issue 10, pp 1637–1656 | Cite as

Process Physics: Inertia, Gravity and the Quantum

  • Reginald T. Cahill
Article
  • 100 Downloads

Abstract

Process Physics models reality as self-organising relational or semantic information using a self-referentially limited neural network model. This generalises the traditional non-process syntactical modelling of reality by taking account of the limitations and characteristics of self-referential syntactical information systems, discovered by Gödel and Chaitin, and the analogies with the standard quantum formalism and its limitations. In process physics space and quantum physics are emergent and unified, and time is a distinct non-geometric process. Quantum phenomena are caused by fractal topologicaldefects embedded in and forming a growing three-dimensional fractal process-space. Various features of the emergent physics are briefly discussed including:quantum gravity, quantum field theory, limited causality and the Born quantum measurement metarule, inertia, time-dilation effects, gravity and the equivalence principle, a growing universe with a cosmological constant, black holes and event horizons, and the emergence of classicality.

process physics Gödel's theorem neural network semantic information self-referential noise process-time process-space quantum gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Cahill, R.T. and Klinger, C.M. (1997). Bootstrap Universe from Self-Referential Noise, preprint gr-qc/9708013.Google Scholar
  2. [2]
    Cahill, R.T. and Klinger, C.M. (2000). Self-Referential Noise and the Synthesis of Three-Dimensional Space, Gen. Rel. Grav. 32, 529, gr-qc/9812083.Google Scholar
  3. [3]
    Cahill, R.T. and Klinger, C.M. (2000). Self-Referential Noise as a Fundamental Aspect of Reality, Proc. 2nd Int. Conf. on Unsolved Problems of Noise and Fluctuations (UPoN'99), eds. D. Abbott and L. Kish, Adelaide, Australia, 11-15th July 1999, Vol. 511, p. 43 (American Institute of Physics, New York), gr-qc/9905082.Google Scholar
  4. [4]
    Cahill, R.T., Klinger, C.M. and Kitto, K. Process Physics: Modelling Reality as Self-Organising Information, The Physicist (2000). 37, 191, gr-qc/0009023.Google Scholar
  5. [5]
    Chown, M. (2000). Random Reality, New Scientist, Feb 26, 165, No 2227, 24–28.Google Scholar
  6. [6]
    Wheeler, J.M. (1983). Law without Law, in Quantum Theory of Measurement, Wheeler, J.A. and Zurek, W.H., eds. (Princeton Univ. Press).Google Scholar
  7. [7]
    Müller, B., Reinhardt, J. and Strickland, M.T. (1995). Neural Networks-An Introduction 2nd ed. (Springer Berlin).Google Scholar
  8. [8]
    Nagel, E. and Newman, J.R. (1958). Gödel's Proof (New York University Press).Google Scholar
  9. [9]
    Chaitin, G.J. (1990). Information, Randomness and Incompleteness, 2nd ed. (World Scientific Singapore).Google Scholar
  10. [10]
    Chaitin, G.J. (1999). The Unknowable (Springer Berlin).Google Scholar
  11. [11]
    Chaitin, G.J. (2001). Exploring Randomness (Springer Berlin).Google Scholar
  12. [12]
    Bak, P., Tang, C. and Wiesenfeld, K. (1987). Phys. Rev. Lett. 59, 381; (1988) Phys. Rev. A 38, 364.Google Scholar
  13. [13]
    [13] Schrödinger, E. (1945). What is Life? (Cambridge Univ. Press).Google Scholar
  14. [14]
    Nicholis, G. and Prigogine, I. (1997). Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (J. Wiley & Sons, New York).Google Scholar
  15. [15]
    Nagels, G. (1985). Gen. Rel. Grav. 17, 545.Google Scholar
  16. [16]
    Wheeler, J.A. (1964). Relativity, Groups and Topology, ed. by B. S. De Witt and C.M. De Witt (Gordon and Breach, New York).Google Scholar
  17. [17]
    Ogden, R.W. (1984). Non-Linear Elastic Deformations (Halstead Press, New York).Google Scholar
  18. [18]
    Manton, N.S. and Ruback, P. J. (1986). Skyrmions in Flat Space and Curved Space, Phys. Lett. B 181, 137.Google Scholar
  19. [19]
    Manton, N.S. Geometry of Skyrmions (1987). Commun. Math. Phys. 111, 469.Google Scholar
  20. [20]
    Gisiger, T. and Paranjape, M.B. (1998). Recent Mathematical Developments in the Skyrme Model, Physics Reports 36, 109.Google Scholar
  21. [21]
    Coleman, S., Hartle, J.B., Piran, T. and Weinberg, S. eds. (1991). Quantum Cosmology and Baby Universes (World Scientific, Singapore).Google Scholar
  22. [22]
    Percival, I.C. (1998). Quantum State Diffusion (Cambridge Univ. Press).Google Scholar
  23. [23]
    Penrose, R. (1989). The Emperors New Mind: Concerning Computers, Minds and the Laws of Physics (Oxford University Press, Oxford).Google Scholar
  24. [24]
    Cahill, R.T. (1989). Aust. J. Phys. 42, 171; Cahill, R.T. (1992) Nucl. Phys. A 543, 63;Cahill, R.T. and Gunner, S.M. (1998). Fizika B 7, 171.Google Scholar
  25. [25]
    Marshak, R.E. (1993). Conceptual Foundations of Modern Particle Physics (World Scientific Singapore).Google Scholar
  26. [26]
    Dugne, J.-J., Fredriksson, S., Hansson, J. and Predazzi, E. (2000). Preon Trinity: A New Model of Leptons and Quarks, 2nd International Conference Physics Beyond The Standard Model: Beyond The Desert 99: Accelerator, Nonaccelerator And Space Approaches, Proceedings, edited by H.V. Klapdor-Kleingrothaus, I.V. Krivosheina. Bristol, IOP, 1236.Google Scholar
  27. [27]
    Bollabás, B. (1985). Random Graphs (Academic Press, London).Google Scholar
  28. [28]
    Riess, A. et al. (1998). Astron. J. 116, 1009(1998); Perlmutter, S. (1999). et al., Astrophys. J. 517, 565.Google Scholar
  29. [29]
    Toffoli, T. (1990), in Complexity, Entropy and the Physics of Information, p 301, Zurek W.H., ed. (Addison-Wesley).Google Scholar
  30. [30]
    Hardy, L. (1992). Quantum Mechanics, Local Realistic Theories and Lorentz-Invariant Realistic Theories, Phys. Rev. Lett. 68, 2981.Google Scholar
  31. [31]
    Browning, D. and Myers, W.T., eds. (1998). Philosophers of Process, 2nd ed. (Fordham Univ. Press).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Reginald T. Cahill
    • 1
  1. 1.School of Chemistry, Physics and Earth SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations