A detailed model for the decomposition of nitramines: RDX and HMX

  • Debashis Chakraborty
  • Richard P. Muller
  • Siddharth Dasgupta
  • William A. GoddardIII


A unified decomposition scheme for two very important cyclic nitramines used as primary explosives – RDX and HMX – has been constructed using ab initio Density Functional Theory (DFT) calculations. Molecular parameters such as vibrational frequencies and moments of inertia corresponding to the computed potential energy profile of unimolecular decomposition of these nitramines were then used to obtain the thermochemistry of all identified species and reaction rate constants of each individual channel. These primary decomposition reactions were then combined with: (i) important secondary reactions of the key reactive radical intermediates, such as CH2NNO2 (Methylene Nitramine MN), CH2N, NO, NO2, OH, etc.; (ii) existing nitramie reaction networks [33]. We have developed an improved mechanism for the detailed chemistry of nitramines which can be applied to combustion and detonation phenomena of this class of energetic materials.

Detonation Nitramines Quantum chemistry Reaction kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, G.F. and Shaw, R.W., Jr. Annu. Rev. Phys. Chem., 43 (1992) 311.CrossRefGoogle Scholar
  2. 2. a.
    Behrens, R., Jr. and Bulusu, S.J., Phys. Chem., 96 (1992) 8877, 8891.Google Scholar
  3. 2. b.
    Behrens, R., Jr. and Bulusu, S.J., Phys. Chem., 95 (1991) 5838.CrossRefGoogle Scholar
  4. 2. c.
    Behrens, R., Jr., J. Phys. Chem., 94 (1990) 6706.CrossRefGoogle Scholar
  5. 2. d.
    Behrens, R., Jr., In Bulusu, S.N. (Ed.), Chemistry and Physics of Energetic materials; Kluwer Academic, The Netherlands, 1990, pp. 347.Google Scholar
  6. 2. e.
    Behrens, R. Jr., Int. J. Chem. Kinet., 22 (1990) 135.CrossRefGoogle Scholar
  7. 3. a.
    Lee, Y.J., Tang, C-J. and Litzinger, T.A., Combust. Flame, 117 (1999) 600.CrossRefGoogle Scholar
  8. 3. b.
    Tang, C-J., Lee, Y.J. and Litzinger, T.A., J. Prop. Power, 15 (1999) 296.Google Scholar
  9. 4.
    Ermolin, N.E. and Zarko, V.E., Combust. Explosion Shock Waves, 33 (1997) 251 and references therein.Google Scholar
  10. 5. a.
    Brill, T.B., Gongwer, P.E. and Williams, G.K.J., Phys. Chem., 98 (1994) 12242. b. Brill, T.B., J. Prop. Power, 11 (1995) 740.CrossRefGoogle Scholar
  11. 6.
    Chakraborty, D., Muller, R.P., Dasgupta, S. and Goddard, W.A. III., J. Phys. Chem., A104 (2000) 2261.Google Scholar
  12. 7.
    Chakraborty, D., Muller, R.P., Dasgupta, S. and Goddard, W.A. III., J. Phys. Chem., A105 (2001) 1302.Google Scholar
  13. 8.
    Ermolin, N.E., Korobeinichev, O.P., Kuibida, L.V., and Fomin, V.M., Combust. Explosion Shock Waves, 24 (1988) 400.CrossRefGoogle Scholar
  14. 9.
    Melius, C.F., In Bulusu, S.N. (Ed.), Chemistry and Physics of Energetic Materials; Kluwer Academic, The Netherlands, 1990, pp. 51.Google Scholar
  15. 10.
    Yetter, R.A., Dryer, F.L., Allen, M.T. and Gatto, L.J., J. Prop. Power, 11 (1995) 683.Google Scholar
  16. 11.
    Liau, Y.-C. and Yang, V., J. Prop. Power, 11 (1995) 729.Google Scholar
  17. 12.
    Li, S.C. and Williams, F.A., J. Prop. Power, 12 (1996) 302.CrossRefGoogle Scholar
  18. 13.
    Davidson, J.E. and Beckstead, M.W., J. Prop. Power, 13 (1997) 375.Google Scholar
  19. 14.
    Becke A.D., J. Chem. Phys., 98 (1993) 5648, 1372; 96 (1992) 2155; 97 (1992) 9173.CrossRefGoogle Scholar
  20. 15.
    Lee, C., Yang, W. and Parr, R.G., Phys. Rev., B.37 (1988) 785.Google Scholar
  21. 16.
    Gilbert, R.G. and Smith, S.C., In Simons, J.P. (Ed.), Theory of Unimolecular and Recombination Reactions, Blackwell Scientific Publication, Oxford, 1990.Google Scholar
  22. 17.
    Garrett, B.C. and Truhlar, D.G., J. Phys. Chem., 83 (1979) 1052.Google Scholar
  23. 18.
    Zhao, X., Hinsta, E.J. and Lee, Y.T., J. Chem. Phys., 88 (1988) 801.CrossRefGoogle Scholar
  24. 19.
    Zhang, S. and Truong, T.N., J. Phys. Chem., A104 (2000) 7304.Google Scholar
  25. 20.
    Chakraborty, D. and Lin, M.C., In Yang, V., Brill, T.B. and Ren, W.-Z. (Eds.), Solid Propellant Chemistry, Combustion, Progress in Astronautics and Aeronautics and Motor Interior Ballistics; Vol. 185, 2000; p. 33.Google Scholar
  26. 21.
    Chakraborty, D. and Lin, M.C., J. Phys. Chem., A103 (1999) 601.Google Scholar
  27. 22.
    Kee, R.J., Rupely, F.M. and Miller, J.A., CHEMKIN-II, A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratories, Report No. SAND87-8248, 1988.Google Scholar
  28. 23.
    Chakraborty, D., Hsu, C.-C. and Lin, M.C., J. Chem. Phys., 109 (1998) 8887.CrossRefGoogle Scholar
  29. 24.
    GRI-Mech 3.0, available in: http://www.me.berkeley.edu/gri_mech/ Authors: Smith, G.P., D. Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., Qin, Z.Google Scholar
  30. 25.
    Prasad, K., Yetter, R.A. and Smooke, M.D., Comb. Sci. Tech., 124 (1997) 25.Google Scholar
  31. 26.
    Melius, C.F., J. De Physique IV, Colloque C4, supp. Au J. De Physique III, 5 (1995) C4-535.Google Scholar
  32. 27.
    Lutz, A.E., Kee, R.J. and Miller, J.A., SENKIN, A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, Report NO. SAND87-8248, 1988.Google Scholar
  33. 28.
    Manaa, M.R. and Fried, L.E., J. Phys. Chem., A103 (1999) 9349.Google Scholar
  34. 29.
    Tokmakoff, A., Fayer, M.D. and Dlott, D.D., J. Phys. Chem., 97 (1993) 1901.CrossRefGoogle Scholar
  35. 30.
    Tarver, C.M., J. Phys. Chem., A101 (1997) 4845.Google Scholar
  36. 31.
    Gilman, J.J., Philos. Mag., B71 (1995) 1057.Google Scholar
  37. 32.
    a. van Duin, A.C.T., Dasgupta, S., Lorant, F. and Goddard III, W.A., J. Phys. Chem. A, b. van Duin, A.C.T., Dasgupta, S., Chakraborty, D. and Goddard III, W.A., in preparation.Google Scholar
  38. 33.
    Prasad, K., Yetter, R.A. and Smooke, M.D., Comb. Sci. Tech., 124 (1997) 35.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Debashis Chakraborty
    • 1
  • Richard P. Muller
    • 1
  • Siddharth Dasgupta
    • 1
  • William A. GoddardIII
    • 1
  1. 1.Materials and Process Simulation Center, 139-74 Beckman InstituteCalifornia Institute of TechnologyU.S.A

Personalised recommendations