Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field

  • Dmitry Bedrov
  • Chakravarthy Ayyagari
  • Grant D. Smith
  • Thomas D. Sewell
  • Ralph Menikoff
  • Joseph M. Zaug


Molecular dynamics simulations using a recently developed quantum chemistry-based atomistic force field [J. Phys. Chem. B, 103 (1999) 3570 ] were performed in order to obtain unit cell parameters, coefficients of thermal expansion, and heats of sublimation for the three pure crystal polymorphs of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The predictions for β-, α-, and δ-HMX showed good agreement with the available experimental data. For the case of β-HMX, anisotropic sound speeds were calculated from the molecular dynamics simulation-predicted elastic coefficients and compared with recent Impulsive Stimulated Light Scattering (ISLS) sound speed measurements. The level of agreement is encouraging.

HMX crystal Molecular dynamics Physical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, Menikoff, R. Granular Explosives and Initiation Sensitivity, LA-UR 99-6023. Scholar
  2. 2.
    Gibbs, T.R. and Popolato, A. (Eds.) LASL Explosive Property Data, University of California, Berkely, 1980.Google Scholar
  3. 3.
    Bedrov, D., Smith, G.D. and Sewell, T.D., J. Chem. Phys., 112 (2000) 7203.CrossRefGoogle Scholar
  4. 4.
    Bedrov, D., Smith, G.D. and Sewell, T.D., Chem. Phys. Lett., 324 (2000) 64.CrossRefGoogle Scholar
  5. 5.
    Smith, G.D. and Bharadwaj, R.K., J. Phys. Chem., B103 (1999) 3570.Google Scholar
  6. 6.
    Kohno, Y., Maekawa, K., Azuma, N., Tsuchioka, T., Hashizume, T. and Imamura, A., Kogyo Kayako, 53 (1992) 227.Google Scholar
  7. 7.
    Cady, H.H., Larson, A.C. and Cromer, D.T., Acta Cryst., 16 (1963) 617.CrossRefGoogle Scholar
  8. 8.
    Cobbledick, R.E. and Small, R.W.H. Acta Cryst., B30 (1974) 1918.Google Scholar
  9. 9.
    Smith, G.D., Bharadwaj, R.K., Bedrov, D. and Ayyagari, C., J. Phys. Chem., B103 (1999) 705.Google Scholar
  10. 10.
    Martyna, G.J., Tuckerman, M.E., Tobias, D.J. and Klein, M.L., Mol. Phys., 87 (1996) 1117.Google Scholar
  11. 11.
    Parrinello, M. and Rahman, A., J. Appl. Phys., 52 (1981) 7182.CrossRefGoogle Scholar
  12. 12.
    Allen, M.P. and Tildesley, D.T., Computer Simulation of Liquids, Oxford, NY, 1987.Google Scholar
  13. 13.
    Ryckaert, J., Ciccotti, G. and Berendsen, H.G.C., J. Comp. Phys., 23 (1977) 327.CrossRefGoogle Scholar
  14. 14.
    Dzyabchenko, A.V., Pivina, T.S. and Arnautova, E.A., J. Mol. Structure, 378 (1996) 67.CrossRefGoogle Scholar
  15. 15.
    Sorescu, D.C., Rice, B.M. and Thompson, D.L., J. Phys. Chem., B102 (1998) 6692.Google Scholar
  16. 16.
    McCrone, W.C., In Fox, D., Labes, M.M. and Weissberger, A., (Eds.), Physics and Chemistry of the Organic Solid State; Vol. II, Wiley, New York, 1965.Google Scholar
  17. 17.
    Herrmann, M., Engel, W. and Eisenreich, N., Propellants Explosives Polytechnics, 17 (1992) 190.CrossRefGoogle Scholar
  18. 18.
    Herrmann, M., Engel, W. and Eisenreich, N., Z. Kristall., 204 (1993) 121.CrossRefGoogle Scholar
  19. 20.
    Smith, G.D., Yoon, D.Y. and Jaffe, R.L., Macromolecules, 26 (1993) 298.CrossRefGoogle Scholar
  20. 21.
    Lyman, J.L., Liau, Y-C. and Brand, H.V., Combustion and Flame, accepted.Google Scholar
  21. 22.
    Rosen, J.M. and Dickinson, C., J. Chem. Eng. Data, 14 (1969) 120.CrossRefGoogle Scholar
  22. 23.
    Taylor, J.W. and Crookes, R.J., J. Chem. Soc., Faraday Trans., 72 (1976) 723.CrossRefGoogle Scholar
  23. 24.
    Landau, L.D. and Lifschitz, E.M., Theory of Elasticity, Section 23. Pergammon Press, Oxford, 1970.Google Scholar
  24. 25.
    Sewell, T.D., Bedrov, D., Menikoff, R. and Smith, G.D. ‘Elastic Properties of HMX’ To appear in Furnish, M.D. (Ed.), Shock Compression of Condensed Matter-2001; Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condense Matter held at Atlanta, GA, June 2001.Google Scholar
  25. 26.
    Parrinello, M. and Rahman, A., J. Chem. Phys., 76 (1982) 2662.CrossRefGoogle Scholar
  26. 27.
    Bennett, C.M. and Sewell, T.D., J. Appl. Phys., 88 (2000) 88.CrossRefGoogle Scholar
  27. 28.
    Tsai, S.W., Mechanics of Composite Materials, Part II, Theoretical Aspects, AFML Tech. Rept. AFML-TR-66-149, November 1966.Google Scholar
  28. 29.
    Zaug, J.M., Proceedings of the Eleventh Symposium (International) on Detonation, Snowmass, Colorado, U.S.A., 1998 p.498 J.M. Short (Ed.).Google Scholar
  29. 30.
    Menikoff, R. and Sewell, T.D. Combust. Theory Modeling, 6 (2002), 103; Section 4.1.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Dmitry Bedrov
    • 1
  • Chakravarthy Ayyagari
    • 1
  • Grant D. Smith
    • 1
  • Thomas D. Sewell
    • 2
  • Ralph Menikoff
    • 2
  • Joseph M. Zaug
    • 3
  1. 1.Department of Materials Science and Engineering and Department of Chemical & Fuels EngineeringUniversity of UtahSalt Lake CityU.S.A
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A
  3. 3.Lawrence Livermore National LaboratoryLivermoreU.S.A

Personalised recommendations