Advertisement

A multiscale approach for modeling crystalline solids

  • Alberto M. Cuitiño
  • Laurent Stainier
  • Guofeng Wang
  • Alejandro Strachan
  • Tahir Çağin
  • William A. GoddardIII
  • Michael Ortiz
Article

Abstract

In this paper we present a modeling approach to bridge the atomistic with macroscopic scales in crystalline materials. The methodology combines identification and modeling of the controlling unit processes at microscopic level with the direct atomistic determination of fundamental material properties. These properties are computed using a many body Force Field derived from ab initio quantum-mechanical calculations. This approach is exercised to describe the mechanical response of high-purity Tantalum single crystals, including the effect of temperature and strain-rate on the hardening rate. The resulting atomistically informed model is found to capture salient features of the behavior of these crystals such as: the dependence of the initial yield point on temperature and strain rate; the presence of a marked stage I of easy glide, specially at low temperatures and high strain rates; the sharp onset of stage II hardening and its tendency to shift towards lower strains, and eventually disappear, as the temperature increases or the strain rate decreases; the parabolic stage II hardening at low strain rates or high temperatures; the stage II softening at high strain rates or low temperatures; the trend towards saturation at high strains; the temperature and strain-rate dependence of the saturation stress; and the orientation dependence of the hardening rate.

Crystalline Modeling Multiscale approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.V. Bulatov and L.P. Kubin. Dislocation modelling at atomistic and mesoscopic scales. Current Opinion in Solid State & Materials Science, 3(6):558-561, 1998.CrossRefGoogle Scholar
  2. 2.
    R. Phillips. Multiscale modeling in the mechanics of materials. Current Opinion in Solid State & Materials Science, 3(6):526-532, 1998.CrossRefGoogle Scholar
  3. 3.
    G.H. Campbell, S.M. Foiles, H.C. Huang, D.A. Hughes, W.E. King, D.H. Lassila, D.J. Nikkel, T.D. de la Rubia, J.Y. Shu, and V.P. Smyshlyaev. Multi-scale modeling of polycrystal plasticity: a workshop report. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 251(1-2):1-22, 1998.Google Scholar
  4. 4.
    R. Phillips, D. Rodney, V. Shenoy, E. Tadmor, and M. Ortiz. Hierarchical models of plasticity: dislocation nucleation and interaction. Modelling and Simulation in Materials Science and Engineering, 7(5):769-780, 1999.CrossRefGoogle Scholar
  5. 5.
    J.A. Moriarty, W. Xu, P. Soderlind, J. Belak, L.H. Yang, and J. Zhu. Atomistic simulations for multiscale modeling in bcc metals. Journal of Engineering Materials and Technology-Transactions of the ASME, 121(2):120-125, 1999.CrossRefGoogle Scholar
  6. 6.
    M.I. Baskes. The status role of modeling and simulation in materials science and engineering. Current Opinion in Solid State & Materials Science, 4(3):273-277, 1999.CrossRefGoogle Scholar
  7. 7.
    M. Ortiz, E.A. Repetto, and L. Stainier. A theory of subgrain dislocation structures. Journal of theMechanics and Physics of Solids, 48(10):2077-2114, 2000.CrossRefGoogle Scholar
  8. 8.
    M. Ortiz and E.A. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. Journal of the Mechanics and Physics of Solids, 47(2):397-462, 1999.CrossRefGoogle Scholar
  9. 9.
    L. Stainer, A.M. Cuitiño, and M. Ortiz. Micromechanical modeling of hardening, rate sensitivity and thermal softening in bcc single crystals. Journal of the Mechanics and Physics of Solids, 2001.Google Scholar
  10. 10.
    Duesbery, V. Vitek, and Bowen. Proceedings of the Royal Society of London, A332:85, 1973.Google Scholar
  11. 11.
    V. Vitek. Proceedings of the Royal Society of London, A352:109, 1976.Google Scholar
  12. 12.
    V. Vitek. Structure of dislocation cores in metallic materials and its impact on their plastic behavior. Progress in Material Science, 36:1-27, 1992.CrossRefGoogle Scholar
  13. 13.
    W. Xu and J.A. Moriarty. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals:Mo as a prototype. Physical Review B-Condensed Matter, 54(10):6941-6951, 1996.Google Scholar
  14. 14.
    M.S. Duesbery and V. Vitek. Plastic anisotropy in bcc transition metals. Acta Materialia, 46(5):1481-1492, 1998.CrossRefGoogle Scholar
  15. 15.
    S. Ismail-Beigi and T.A. Arias. Ab initio study of screw dislocations in mo and ta: A new picture of plasticity in bcc transition metals. Physical Review Letters, 84(7):1499-1502, 2000.CrossRefGoogle Scholar
  16. 16.
    G. Wang, A. Strachan, T. Cagin, and W.A. III Goddard. Molecular dynamics simulations of \( \frac{1}{2} \) a< 111 > screw dislocation in ta. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 309(SI):133-137, 2001.Google Scholar
  17. 17.
    M.S. Duesbery and W. Xu. The motion of edge dislocations in body-centered cubic metals. Scripta Materialia, 39(3):283-287, 1998.CrossRefGoogle Scholar
  18. 18.
    P. B. Hirsch. In 5th International Conference on Crystallography, page 139. Cambridge University, 1960.Google Scholar
  19. 19.
    A. Seeger and P. Schiller. Acta Metallurgica, 10:348, 1962.CrossRefGoogle Scholar
  20. 20.
    J. P. Hirth and J. Lothe. Theory of Dislocations. McGraw-Hill, New York, 1968.Google Scholar
  21. 21.
    J.P. Hirth and R.G. Hoagland. Nonlinearities in the static energetics and in the kinematics of dislocations. Physica D, 66(1-2):71-77, 1993.CrossRefGoogle Scholar
  22. 22.
    W. Xu and J.A. Moriarty. Accurate atomistic simulations of the peierls barrier and kink-pair formation energy for < 111 > screw dislocations in bcc mo. Computational Materials Science, 9(3-4):348-356, 1998.CrossRefGoogle Scholar
  23. 23.
    A. Seeger and L. Hollang. The flow-stress asymmetry of ultra-pure molybdenum single crystals. Materials Transactions JIM, 41(1):141-151, 2000.Google Scholar
  24. 24.
    W. Wasserbäch. Philosophical Magazine, A53:335, 1986.Google Scholar
  25. 25.
    R. Lachenmann and H. Schultz. Scripta Metallurgica, 4:33, 1970.CrossRefGoogle Scholar
  26. 26.
    M. Tang, B. Devincre, and L.P. Kubin. Simulation and modelling of forest hardening in body centre cubic crystals at low temperature. Modelling and Simulation in Materials Science and Engineering, 7(5):893-908, 1999.CrossRefGoogle Scholar
  27. 27.
    T. Suzuki, S. Takeuchi, and H. Yoshinaga. Dislocation Dynamics and Plasticity. Springer-Verlag, 1991.Google Scholar
  28. 28.
    A.D. Brailsford. Electronic component of dislocation drag in metals. Physical Review, 186:959-961, 1969.CrossRefGoogle Scholar
  29. 29.
    M.I. Baskes, R.G. Hoagland, and T. Tsuji. An atomistic study of the strength of an extended-dislocation barrier. Modelling and Simulation in Materials Science and Engineering, 6(1):9-18, 1998.CrossRefGoogle Scholar
  30. 30.
    D. Rodney and R. Phillips. Structure and strength of dislocation junctions: An atomic level analysis. Physical Review Letters, 82(8):1704-1707, 1999.CrossRefGoogle Scholar
  31. 31.
    V.B. Shenoy, R.V. Kukta, and R. Phillips. Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals. Physical Review Letters, 84(7):1491-1494, 2000.CrossRefGoogle Scholar
  32. 32.
    G. Danna and W. Benoit. Dynamic recovery of the microstructure of screw dislocations in high-purity bcc metals. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 164(1-2):191-195, 1993.Google Scholar
  33. 33.
    M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T. de la Rubia. Models for long-/short-range interactions and cross slip in 3d dislocation simulation of bcc single crystals. Modelling and Simulation in Materials Science and Engineering, 6(4):467-492, 1998.CrossRefGoogle Scholar
  34. 34.
    H.C. Huang, N. Ghoniem, T.D. de la Rubia, M. Rhee, H. Zbib, and J. Hirth. Stability of dislocation shortrange reactions in bcc crystals. Journal of Engineering Materials and Technology-Transactions of the ASME, 121(2):143-150, 1999.Google Scholar
  35. 35.
    L. P. Kubin, B. Devincre, and M. Tang. Journal of Computer Aided Material Design, 5:31, 1998.CrossRefGoogle Scholar
  36. 36.
    H.M. Zbib, T.D. de la Rubia, M. Rhee, and J.P. Hirth. 3d dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear Materials, 276:154-165, 2000.CrossRefGoogle Scholar
  37. 37.
    P. Franciosi and A. Zaoui. Multislip in f.c.c. crystals: A theoretical approach compared with experimental data. Acta Metallurgica, 30:1627, 1982.CrossRefGoogle Scholar
  38. 38.
    P. Franciosi and A. Zaoui. Glide mechanisms in b.c.c. crystals: an investigation of the case of α-iron through multislip and latent hardening tests. Acta Metallurgica, 31:1331, 1983.CrossRefGoogle Scholar
  39. 39.
    D. Kuhlmann-Wilsdorf. Theory of plastic deformation: properties of low energy dislocation structures. Materials Science and Engineering, A113:1, 1989.Google Scholar
  40. 40.
    W. G. Johnston and J. J. Gilman. Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals. Journal of Applied Physics, 30:129, 1959.CrossRefGoogle Scholar
  41. 41.
    W. G. Johnston and J. J. Gilman. Dislocation multiplication in lithium fluoride crystals. Journal of Applied Physics, 31:632, 1960.CrossRefGoogle Scholar
  42. 42.
    P. P. Gillis and J. Gilman. Dynamical Dislocation Theory of Crystal Plasticity. II. Easy Glide and Strain Hardening. Journal of Applied Physics, 36:3380, 1965.CrossRefGoogle Scholar
  43. 43.
    U. Essmann and M. Rapp. Slip in copper crystals following weak neutron bombardment. Acta Metallurgica, 21:1305, 1973.CrossRefGoogle Scholar
  44. 44.
    K.P.D. Lagerlof. On deformation twinning in bcc metals. Acta Metallurgica et Materialia, 41(7):2143-2151, 1993.CrossRefGoogle Scholar
  45. 45.
    H. Dybiec. Model of the early deformation stage of bcc metals in low-temperature. Zeitschrift für Metallkunde, 86(7):512-517, 1995.Google Scholar
  46. 46.
    A. Strachan, T. Cagin, O. Gulseren, S. Mukherjee, R.E. Cohen, and W.A. Goddard III. First principles force field for metallic tantalum. Physical Review B, 2001.Google Scholar
  47. 47.
    M.S. Daw and M.I. Baskes. Embedded-atom method-derivation and application to impurities, surfaces, and other defects in metals. Physical Review B-Condensed Matter, 29(12):6443-6453, 1984.Google Scholar
  48. 48.
    M.S. Daw, S.M. Foiles, and M.I. Baskes. The embedded-atom method-a review of theory and applications. Materials Science Reports, 9(7-8):251-310, 1993.CrossRefGoogle Scholar
  49. 49.
    S. Chantasiriwan and F. Milstein. Higher-order elasticity of cubic metals in the embedded-atom method. Physical Review B-Condensed Matter, 53(21):14080-14088, 1996.Google Scholar
  50. 50.
    P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith. Universal features of the equation of state of solids. Journal of Physics-Condensed Matter, 1(11):1941-1963, 1989.CrossRefGoogle Scholar
  51. 51.
    P. Vinet, J. Ferrante, J.R. Smith, and J.H. Rose. A universal equation of state for solids. Journal of Physics C-Solid State Physics, 19(20):L467-L473, 1986.CrossRefGoogle Scholar
  52. 52.
    Tahir Cagin Alejandro Strachan and William A. Goddard III. Critical behavior in spallation failure of metals. Physical Review B, 63:0601034, 2001.Google Scholar
  53. 53.
    G. Wang, A. Strachan, T. Cagin, and W.A. Goddard III. Kinks in a/2 < 111> screw dislocation in ta. Journal of Computer Aided Materials Design, 2001.Google Scholar
  54. 54.
    L.H. Yang, P. Soderlind, and J.A. Moriarty. Accurate atomistic simulation of (a/2) < 111 > screw dislocations and other defects in bcc tantalum. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 81(5):1355-1385, 2001.Google Scholar
  55. 55.
    T.E. Mitchell and W.A. Spitzig. Three-stage hardening in tantalum single crystals. Acta Metallurgica, 13:1169-1179, 1965.CrossRefGoogle Scholar
  56. 56.
    M. Ortiz and L. Stainier. The variational formulation of viscoplastic constitutive updates. Computer Methods in Applied Mechanics and Engineering, 171(3-4):419-444, 1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Alberto M. Cuitiño
    • 1
  • Laurent Stainier
    • 2
  • Guofeng Wang
    • 3
  • Alejandro Strachan
    • 3
  • Tahir Çağin
    • 3
  • William A. GoddardIII
    • 3
  • Michael Ortiz
    • 4
  1. 1.Department of Mechanical and Aerospace EngineeringRutgers UniversityU.S.A
  2. 2.Laboratoire de Techniques Aéronautiques et SpatialesUniversity of LiègeBelgium
  3. 3.Materials and Process Simulation Center, Beckman Institute (139-74)California Institute of TechnologyU.S.A
  4. 4.Graduate Aeronautical LaboratoriesCalifornia Institute of TechnologyU.S.A

Personalised recommendations