Advertisement

Accurate calculations of the Peierls stress in small periodic cells

  • D.E. Segall
  • T.A. Arias
  • A. Strachan
  • W.A. GoddardIII
Article

Abstract

The Peierls stress for a [111]-screw dislocation in bcc Tantalum is calculated using an embedded atom potential. More importantly, a method is presented which allows accurate calculations of the Peierls stress in the smallest periodic cells. This method can be easily applied to ab initio calculations, where only the smallest unit cells capable of containing a dislocation can be conviently used. The calculation specifically focuses on the case where the maximum resolved shear stress is along a {110}-plane.

Ab initio Boundary conditions Dislocation Peierls stress Tantalum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, G., Strachan, A., Cagin, T. and Goddard, W.A. III, Mater Sci. Engng A. (2001).Google Scholar
  2. 2.
    Shenoy, V.J. and Phillips, R., Phil. Mag. A76 (1997) 367.Google Scholar
  3. 3.
    Moriarty, J.A., Xu, W., Söderlind, P., Yang, L.H. and Zhu, J., J. Engng. Mater. Technol., 121 (1999) 120.Google Scholar
  4. 4.
    Xu, W., Moriarty, J.A., Comp. Mater. Sci., 9 (1998) 348.CrossRefGoogle Scholar
  5. 5.
    Takeuchi, S., Core structure and glide behavior of a screw dislocation in teh bcc lattice. In Lee, J.K. (Ed.), Interatomic Potentials and Crystalline Defects, 1980, p. 201.Google Scholar
  6. 6.
    Yang, L.H., Söderlind, P. and Moriarty, J.A., Phil. Mag. A, 81 (2001) 1355.CrossRefGoogle Scholar
  7. 7.
    Bulatov, V.V., Richmond, O. and Glasov, M.V., Acta Mater., 47 (1999) 3507.CrossRefGoogle Scholar
  8. 8.
    Rao, S. and Woodward, C., Phil. Mag. A 81 (2001) 1317.CrossRefGoogle Scholar
  9. 9.
    Rao, S., Hernandez, C., Simmons, J., Parthasarathy, T. and Woodward, C., Phil. Mag. A77 (1998) 231.Google Scholar
  10. 10.
    Marklund, S., Phys. Status Solidi B85 (1978) 673.Google Scholar
  11. 11.
    Bigger, J.R.K. and et al., Phys. Rev. Lett., 69 (1992) 2224.CrossRefGoogle Scholar
  12. 12.
    Lehto, N. and Oberg, S., Phys. Rev. Lett., 80 (1998) 5568.CrossRefGoogle Scholar
  13. 13.
    Strachan, A., Cagin, T., Gulseren, O., Mukherjee, S., Cohen, R.E. and Goddard III, W.A., In preparation.Google Scholar
  14. 14.
    Stroh, A.N., Phil. Mag., 3 (1958) 625.CrossRefGoogle Scholar
  15. 15.
    Head, A.K., Phys. Stat. Sol., 6 (1964) 461.Google Scholar
  16. 16.
    Hirth, J.P. and Lothe, J. Theory of Dislocations. John Wiley and Sons, 2 edition, 1982.Google Scholar
  17. 17.
    Vitek, V., Cryst. Lattice Defects, 5 (1974) 1.Google Scholar
  18. 18.
    Arias, T.A. and Joannopoulos, J.D., Phys. Rev. Lett., 69 (1992) 3330.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Arias, T.A. and Joannopoulos, J.D., Phys. Rev. B47 (1993) 10497.Google Scholar
  20. 20.
    Duesberg, M.S., Proc. R. Soc. Lond. A, 392 (1984) 145.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D.E. Segall
    • 1
  • T.A. Arias
    • 2
  • A. Strachan
    • 3
  • W.A. GoddardIII
    • 3
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyU.S.A
  2. 2.Laboratory of Atomic and Solid State PhysicsCornell UniversityU.S.A
  3. 3.Materials and Process Simulation Center, Beckman Institute (139-74)California Institute of TechnologyU.S.A

Personalised recommendations