Advertisement

Water, Air and Soil Pollution: Focus

, Volume 2, Issue 3, pp 141–152 | Cite as

Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

  • Rainer U. MeckenstockEmail author
  • Barbara Morasch
  • Matthias Kästner
  • Andrea Vieth
  • Hans Hermann Richnow
Article

Abstract

13C/12C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13C/12C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13C/12C isotope fractionation factors of the batch culture experiments together with the observed 13C/12C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing concentrations accompanied with an increase in the 13C/12C stable carbon isotope ratio of the residual toluene. Calculation of the extent of biodegradation based on the isotope values and laboratory derived isotope fractionation factors showed that the residual toluene was degraded to more than 99% by microbial activity. Calculation of the theoretical residual toluene concentrations based on the measured isotope values described the strongly decreasing concentrations along the plume. Other aromatic hydrocarbons like benzene and naphthalene which were analysed in the same course also showed decreasing concentrations along the groundwater flow path accompanied by increasing δ13C values indicating biodegradation.

anaerobic degradation aromatic hydrocarbons biodegradation BTEX natural attenuation PAH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahad, J. M. E., Lollar, B. S., Edwards, E. A., Slater, G. F. and Sleep, B. E.: 2000, ‘Carbon Isotope Fractionation during Anaerobic Biodegradation of Toluene: Implications for Intrinsic Bioremediation’, Environ. Sci. Technol. 34, 892–896.Google Scholar
  2. Bloom, Y., Aravena, R., Hunkeler, D., Edwards, E. and Frape, S. K.: 2000, ‘Carbon Isotope Fractionation during Microbial Degradation of Trichloroethene, cis-1,2-cichloroethene, and Vinyl Chloride: Implications for Assessment of Natural Attenuation’, Environ. Sci. Technol. 34, 2768–2772.Google Scholar
  3. Cline, J. D.: 1969, ‘Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters’, Limnol. Oceanogr. 14, 454–458.Google Scholar
  4. Dolfing, J., Zeyer, J., Binder-Eicher, P. and Schwarzenbach, R. P.: 1990, ‘Isolation and Characterization of a Bacterium that Mineralizes Toluene in the Absence of Molecular Oxygen’, Arch. Microbiol. 154, 336–341.Google Scholar
  5. Gibson, D. T. and Subramanian, V.: 1984, ‘Microbial Degradation of Aromatic Hydrocarbons’, in D. T. Gibson (ed.), Microbial Degradation of Organic Compounds, Dekker, New York, pp. 181–252.Google Scholar
  6. Heider, J., Spormann, A. M., Beller, H. R. and Widdel, F.: 1999, ‘Anaerobic Bacterial Metabolism of Hydrocarbons’, FEMS Microbiol. Rev. 22, 459–473.Google Scholar
  7. Hoefs, J.: 1997, Stable Isotope Geochemistry, Springer Verlag, Berlin.Google Scholar
  8. Hunkeler, D., Aravena, R. and Butler, B. J.: 1999, ‘Monitoring Microbial Dechlorination of Tet-rachloroethene (PCE) in Groundwater using Compound-specific Stable Isotope Carbon Ratios: Microcosm and Field Studies’, Environ. Sci. Technol. 33, 2733–2738.Google Scholar
  9. Lebedew, W. C., Owsjannikow, W. M., Mogilewskij, G. A. and Bogdanow, W. M.: 1969, ‘Fraktionierung der Kohlenstoffisotope durch Mikrobiologische Prozesse in der Biochemischen Zone’, Angew. Geol. 15, 621–624.Google Scholar
  10. Lollar, B. S., Slater, G. F., Ahad, J., Sleep, B., Spivack, J., Brennan, M. and MacKenzie, P.: 1999, ‘Contrasting Carbon Isotope Fractionation during Biodegradation of Trichloroethylene and Toluene: Implications for Intrinsic Bioremediation’, Org. Geochem. 30, 813–820.Google Scholar
  11. Lovley, D. R. and Lonergan, D. J.: 1990, ‘Anaerobic Oxidation of Toluene, Phenol, and p-cresol by the Dissimilatory Iron-reducing Organism, GS-15’, Appl. Environ. Microbiol. 56, 1858–1864.Google Scholar
  12. Meckenstock, R. U.: 1999, ‘Fermentative Toluene Degradation in Anaerobic Defined Syntrophic Cocultures’, FEMS Microbiol. Lett. 177, 67–73.Google Scholar
  13. Meckenstock, R. U., Morasch, B., Warthmann, R., Schink, B., Annweiler, E., Michaelis, W. and Richnow, H. H.: 1999, 13C/12C Isotope Fractionation of Aromatic Hydrocarbons during Microbial Degradation’, Environ. Microbiol. 1, 409–414.Google Scholar
  14. Morasch, B., Richnow, H. H., Schink, B. and Meckenstock, R. U.: 2001, ‘Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons’, Environ. Microbiol. (submitted).Google Scholar
  15. O'Leary, M. H.: 1980, ‘Determination of Heavy-atom Isotope Effects on Enzyme-catalyzed Reactions’, in D. L. Purich (ed.), Enzyme Kinetics and Mechanism, Academic Press, New York, pp. 83–103.Google Scholar
  16. O'Leary, M. H.: 1984, ‘Carbon Isotope Fractionation in Plants’, Phytochemistry 20, 553–567.Google Scholar
  17. Olsen, R. H., Kukor, J. J. and Kaphammerq, B.: 1994, ‘A Novel Toluene-3-monooxygenase Pathway Cloned from Pseudomonas pickettii PKO1’, J. Bacteriol. 176, 3749–3756.Google Scholar
  18. Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F.: 1993, ‘Complete Oxidation of Toluene under Strictly Anoxic Conditions by a New Sulfate-reducing Bacterium’, Appl. Environ. Microbiol. 59, 1444–1451.Google Scholar
  19. Rayleigh, J. W. S.: 1896, ‘Theoretical Considerations Respecting the Seperation of Gases by Diffusion and Similar Processes’, Philos. Mag. 42, 493–498.Google Scholar
  20. Richnow, H. H. and Meckenstock, R. U.: 1999, ‘Isotopen-geochemisches Konzept zur In Situ Erfassung des Biologischen Abbaus in Kontaminiertem Grundwasser’, Ter raTech 5/1999, 38–41.Google Scholar
  21. Sambrook, J., Fritsch, E. F. and Maniatis, R.: 1989, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  22. Stahl, W. J.: 1980, ‘Compositional Changes and 13C/12C Fractionations during the Degradation of Hydrocarbons by Bacteria’, Geochim. Cosmochim. Acta 44, 1903–1907.Google Scholar
  23. Stookey, L. L.: 1970, ‘Ferrozine - A New Spectrophotometric Reagent for Iron’, Anal. Chem. 42, 779–781.Google Scholar
  24. Widdel, F. and Bak, F.: 1992, ‘Gram-negative Mesophilic Sulfate-reducing Bacteria’, in A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer (eds), The Prokaryotes, Springer Verlag, New York, pp. 3352–3378.Google Scholar
  25. Worsey, M. J. and Williams, P. A.: 1975, ‘Metabolism of Toluene and Xylenes by Pseudomonas putida (Arvilla) mt-2: Evidence for a New Function of the TOL Plasmid’, J. Bacteriol. 124, 7–13.Google Scholar
  26. Yeh, W. K., Gibson, D. T. and Liu, T.-N.: 1977, ‘Toluene Dioxygenase: A Multicomponent Enzyme System’, Biochem. Biophys. Res. Commun. 78, 401–410.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rainer U. Meckenstock
    • 1
    Email author
  • Barbara Morasch
    • 2
  • Matthias Kästner
    • 3
  • Andrea Vieth
    • 3
  • Hans Hermann Richnow
    • 3
  1. 1.Eberhard-Karls University of Tübingen, Center for Applied GeoscienceTübingenGermany
  2. 2.University of Konstanz, Faculty of BiologyKonstanzGermany
  3. 3.Department of Remediation ResearchCenter for Environmental ResearchLeipzigGermany

Personalised recommendations