Plant Molecular Biology

, Volume 50, Issue 4–5, pp 613–622 | Cite as

Leaf ESTs from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis

  • J.E. Brandle
  • A. Richman
  • A.K. Swanson
  • B.P. Chapman


Expressed sequence tags (ESTs) are providing a new approach to gene discovery in plant secondary metabolism. Steviarebaudiana Bert. leaves produce high concentrations of diterpene steviol glycosides and should be a rich source of transcripts involved in diterpene synthesis. In order to create a resource for gene discovery and increase our understanding of steviol glycoside biosynthesis, we sequenced 5548 ESTs from a S. rebaudiana leaf cDNA library. The EST collection was fully annotated based on database search results. ESTs involved in diterpene synthesis were identified using published sequences as electronic probes, by keyword searches of search results, and by differential representation. A significant portion of the ESTs were specific for standard leaf metabolic pathways; energy and primary metabolism represented 17.6% and 13.1% of total transcripts respectively. Diterpene metabolism in S. rebaudiana represented 1.1% of total transcripts. This study identified candidate genes for 70% of the known steps in the steviol glycoside pathway. One candidate, kaurene oxidase, was the 8th most abundant EST in the collection. Identification of many candidate genes specific to the 1-deoxyxylulose 5-phosphate pathway suggests that the primary source of isopentenyl diphosphate, a precursor of geranylgeranyl diphosphate, is via the non-mevalonic acid pathway. The use of ESTs has greatly facilitated the identification of candidate genes and increased our understanding of diterpene metabolism.

diterpene expressed sequence tags Stevia steviol glycosides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablett, E., Seaton, G., Scott, K., Shelton, D., Graham, M.W., Baverstock, P., Lee, L.S. and Henry, R. 2000. Analysis of grape ESTs: global gene expression patterns in leaf and berry. Plant Sci. 159: 87–95.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Arigoni, D., Eisenreich, W., Latzel, C., Sagner, S., Radykewicz, T., Zenk, M.H. and Bacher, A. 1999. Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosenthesis from 1-deoxyxylulose in higher plants. Proc. Natl. Acad. Sci. USA 96: 1309–1314.Google Scholar
  4. Asamizu, E., Nakamura, Y., Sata, S. and Tabata, S. 2000. A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res. 7: 175–180.Google Scholar
  5. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C. et al. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. The EU Arabidopsis Genome Project. Nature 391: 485–488.Google Scholar
  6. Blattner, F.R., Plunkett, G. III, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides. J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.Google Scholar
  7. Brandle, J.E. 1998. Genetic control of rebaudioside A and C concentration in leaves of the sweet herb, Stevia rebaudiana. Can. J. Plant Sci. 79: 85–92.Google Scholar
  8. Brandle, J.E. and Rosa, N. 1992. Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 72: 1263–1266.Google Scholar
  9. Brandle, J.E., Starratt, A.N. and Gijzen, M. 1998. Stevia rebaudiana: its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78: 527–536.Google Scholar
  10. Campos, N., Rodriguez-Concepción, M., Seemann, M., Rohmer, M. and Boronat, A. 2001. Identification of gcpE as a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett. 488: 170–173.Google Scholar
  11. Cunningham, F.X., Lafond, T.P. and Gantt, E. 2000. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J. Bact. 182: 5841–5848.Google Scholar
  12. Eisenreich, W., Rohdich, F. and Bacher, A. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 678–684.Google Scholar
  13. Gang, D.R., Wang, J., Dudareva, N., Hee Nam, K., Simon, J.E., Lewinsohn, E. and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 125: 539–555.Google Scholar
  14. Hedden, P. and Phillips, A.L. 2000. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5: 523–530.Google Scholar
  15. Helliwell, C.A., Poole, A., Peacock, W.J. and Dennis, E.S. 1999. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119: 507–510.Google Scholar
  16. Helliwell, C.A., Chandler, P.M., Poole, A., Dennis, E.S. and Peacock, W.J. 2001. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Plant Biol. 98: 2065–2070.Google Scholar
  17. Herz, S., Wungsintaweekul, J., Schuhr, C.A., Hecht, S., Lüttgen, H., Sagner, S., Fellermeier, M., Eisenreich, W., Zenk, M.H., Bacher, A. and Rohdich, F. 2000. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2Cmethyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Proc. Natl. Acad. Sci. USA 97: 2486–2490.Google Scholar
  18. Jurka, J. 2000. Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet. 16 (9): 418–420.Google Scholar
  19. Kacser, H. and Acerenza, L. 1993. A universal method of achieving increases in metabolic production. Eur. J. Biochem. 216: 361–367.Google Scholar
  20. Kim, K.K., Sawa, Y., and Shibata, H. 1996. Hydroxylation of entkaurenoic acid to steviol in Stevia rebaudiana Bertoni: purification and partial characterization of the enzyme. Arch. Biochem. Biophys. 332: 223–230.Google Scholar
  21. Lange, B.M. and Croteau, R. 1999. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem. Biophys. 365: 170–174.Google Scholar
  22. Lange, B.M., Wildung, M.R., McCaskill, D. and Croteau, R. 1998. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA 95: 2100–2104.Google Scholar
  23. Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D. and Croteau, R. 1999. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA 97: 2934–2939.Google Scholar
  24. Lüttgen, H., Rohdich, F., Herz, S., Wungsintaweekul, J., Hecht, S., Schuhr, C.A., Fellermeier, M., Sagner, S., Zenk, M.H., Bacher, A. and Eisenreich, W. 2000. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc. Natl. Acad. Sci. USA 97: 1062–1067.Google Scholar
  25. McGarvey, D.J. and Croteau, R. 1995. Terpenoid metabolism. Plant Cell 7: 1015–1026.Google Scholar
  26. Mewes, H.W., Albermann, K., Bähr, Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maieri, A., Oliver, S.G., Pfeiffer, F. and Zollner, A. 1997. Overview of the yeast genome. Nature 387: 7–65.Google Scholar
  27. Ohlrogge, J. and Benning, C. 2000. Unravelling plant metabolism by EST analysis. Curr. Opin. Plant Biol. 3: 224–228.Google Scholar
  28. Richman, A.S., Gijzen, M., Starratt, A.N., Yang, Z. and Brandle, J.E. 1999. Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant J. 19: 411–421.Google Scholar
  29. Rodriguez-Concepción, M., Campos, N., Lois, L.M., Maldonado, C., Hoeffler, J.F., Grosdemange-Billiard, C., Rohmer, M. and Boronat, A. 2000. Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett. 473: 328–332.Google Scholar
  30. Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A. and Zenk, M.H. 1999. Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc. Natl. Acad. Sci. USA 96: 11758–11763.Google Scholar
  31. Rohdich, F., Wungsintaweekul, J., Lüttgen, H., Fischer, M., Eisenreich, W., Schuhr, C.A., Fellermeier, M., Schramek, N., Zenk, M.H. and Bacher, A. 1999 Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from tomato. Proc. Natl. Acad. Sci. USA 97: 8251–8256.Google Scholar
  32. Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. and Tabata, S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6 (5): 283–290.Google Scholar
  33. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, and Wisman, E. 2001. Microarray analysis of diurnal and circadianregulated genes in Arabidopsis. Plant Cell 13:113–123.Google Scholar
  34. Schuster, G., Lisitsky, I. and Klaff, P. 1999. Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 120: 937–944.Google Scholar
  35. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72.Google Scholar
  36. Shibata, H., Sonoke, S., Ochiai, H., Nishihashi, H. and Yamada, M. 1991. Glucosylation of steviol and steviol-glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiol. 95: 152–156.Google Scholar
  37. Shibata, H., Sawa, Y., Oka, T., Sonoke, S., Kim, K.K. and Yoshioka, M. 1995. Steviol and steviol-glucoside: glucosyltransferase activities in Stevia rebaudiana Bertoni: purification and partial characterization. Arch. Biochem. Biophys. 321: 390–396.Google Scholar
  38. Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlén, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95: 3330–13335.Google Scholar
  39. Totté, N., Caron, L., Rohmer, M., Compernolle, F., Baboeuf, I. and Geuns, J.M.C. 2000. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetahedron Lett. 41: 6407–6410.Google Scholar
  40. Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet. 15: 57–61.Google Scholar
  41. van de Loo, F.J., Broun, P., Turner, S. and Somerville, C. 1995. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc. Natl. Acad. Sci. USA 92: 6743–6747.Google Scholar
  42. Vogt, T. and Jones, P. 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5: 380–386.Google Scholar
  43. White, J.A., Todd, J., Newman, T., Focks, N., Girke, T., Martínez de Ilárduya, M., Jaworski, J.G., Ohlrogge, J.B. and Benning, C. 2000. A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol. 124: 582–1594.Google Scholar
  44. Wu, L., Ueda, T. and Messing, J. 1995. The formation of mRNA 3'-ends in plants. Plant J. 8: 323–329.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J.E. Brandle
    • 1
  • A. Richman
    • 1
  • A.K. Swanson
    • 1
  • B.P. Chapman
    • 1
  1. 1.Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, OntarioCanada

Personalised recommendations