Boundary-Layer Meteorology

, Volume 105, Issue 2, pp 221–252 | Cite as

Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99

  • R.M. Banta
  • R. K. Newsom
  • J. K. Lundquist
  • Y. L. Pichugina
  • R. L. Coulter
  • L. Mahrt


Characteristics and evolution of the low-level jet (LLJ)over southeastern Kansas were investigated during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES–99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of Dopplermini-sodar/profiler combinations. Using this collection of instrumentation we determined thespeed UX, height ZX and direction DX of the LLJ. We investigate here the frequencyof occurrence, the spatial distribution, and the evolution through the night, of these LLJcharacteristics. The jet of interest in this study was that which generates the shear and turbulencebelow the jet and near the surface. This was represented by the lowest wind maximum.We found that this wind maximum, which was most often between 7 and 10 m s‐1,was often at or just below 100 m above ground level as measured by HRDL at the CASEScentral site. Over the 60 km profiler–sodararray, the topography varied by ∼100 m. The wind speed anddirection were relatively constant over this distance (with some tendency for strongerwinds at the highest site), but ZX was more variable. ZX was occasionally about equal at allthree sites, indicating that the jet was following the terrain, but more often it seemed to berelatively level, i.e., at about the same height above sea level. ZX was also more variable thanUX in the behaviour of the LLJ with time through the night, and on some nights $UX wasremarkably steady. Examples of two nights with strong turbulence below jet level were furtherinvestigated using the 60 m tower at the main CASES–99 site. Evidence of TKE increasing withheight and downward turbulent transport of TKE indicates that turbulence was primarilygenerated aloft and mixed downward, supporting the upside–down boundary layer notion in thestable boundary layer.

CASES-99 Lidar Low–level jet Nocturnal boundary layer Stable boundary layer Wind profiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E. L., Claffey, K. J., and Makshtas, A. P.: 2000, 'Low-Level Atmospheric Jets and Inversions over the Western Weddell Sea', Boundary-Layer Meteorol. 97, 459-486.Google Scholar
  2. Banta, R. M., Senff, C. J., White, A. B., Trainer, M., McNider, R. T., Valente, R. J., Mayor, S. D., Alvarez, R. J., Hardesty, R. M., Parish, D. D., and Fehsenfeld, F. C.: 1998, 'Daytime Buildup and Nighttime Transport of Urban Ozone in the Boundary Layer during a Stagnation Episode', J. Geophys. Res. 103, 22,519-22,544.Google Scholar
  3. Blackadar, A. K.: 1957, 'Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions', Bull. Amer. Meteorol. Soc. 38, 283-290.Google Scholar
  4. Blumen, W., Banta, R. M., Burns, S. P., Fritts, D. C., Newsom, R. K., Poulos, G. S., and Sun, J.: 2001, 'Turbulence Statistics of a Kelvin-Helmholtz Billow Event Observed in the Nighttime Boundary Layer during the CASES-99 Field Program', Dyn. Atmos. Oceans 34, 189-204.Google Scholar
  5. Bonner, W. D.: 1968, 'Climatology of the Low Level Jet', Mon. Wea. Rev. 96, 833-850.Google Scholar
  6. Bowen, B. M.,:1996, 'Example of Reduced Turbulence during Thunderstorm Outflows', J. Appl. Meteorol. 35, 1028-1032.Google Scholar
  7. Browning, K. A. and Wexler. R.: 1968, 'The Determination of Kinematic Properties of a Wind Field Using Doppler Radar', J. Appl. Meteorol. 7, 105-113.Google Scholar
  8. Coulter, R. L, and Kallistratova, M. A.: 1999, 'The Role of Acoustic Sounding in a High-Technology Era', Meteorol. Atmos. Phys. 71, 3-13.Google Scholar
  9. Coulter, R. L., Klazura, G., Lesht, B. M., Martin, T. J., Shannon, J. D., Sisterson, D. L., and Wesely, M. L.: 1999, 'The Argonne Boundary Layer Experiments Facility: Using Minisodars to Complement a Wind Profiler Network', Meteorol. Atmos. Phys. 71, 53-59.Google Scholar
  10. Cuxart, J., Morales, G., Terradellas, E., and Yagüe, C.: 2002, 'Study of Coherent Structures and Estimation of the Pressure Transport Terms for the Nocturnal Stable Boundary Layer', Boundary-Layer Meteorol. 105, 305-328.Google Scholar
  11. Darby, L. S., Banta, R. M., Brewer, W. A., Neff, W. D., Marchbanks, R. D., McCarty, B. J., Senff, C. J., White, A. B., Angevine, W. M., and Williams, E. J.: 2002, 'Vertical Variations in O3 Concentrations before and after a Gust Front Passage', J. Geophys. Res., in press.Google Scholar
  12. Droegemeier, K. K. and Wilhelmson, R. B.: 1987, 'Numerical Simulation of Thunderstorm Outflow Dynamics, Part I: Outflow Sensitivity Experiments and Turbulence Dynamics', J. Atmos. Sci. 44, 1180-1210.Google Scholar
  13. Eklund, W. L., Carter, D. A., and Balsley, B. B.: 1988, 'A UHFWind Profiler for the Boundary Layer: Brief Description and Initial Results', J. Atmos. Oceanic Tech. 5, 432-441.Google Scholar
  14. Frisch, A. S., Orr, B.W., and Martner, B. E.: 1992, 'Doppler Radar Observations of the Development of a Boundary-Layer Nocturnal Jet', Mon. Wea. Rev. 120, 3-16.Google Scholar
  15. Grund, C. J., Banta, R.M., George, J. L., Howell, J. N., Post, M. J., Richter, R. A., and Weickmann, A. M.: 2001, 'High-Resolution Doppler Lidar for Boundary-Layer and Cloud Research', J. Atmos. Ocean. Tech. 18, 376-393.Google Scholar
  16. Hoecker, W. L.: 1963, 'Three Southerly Low-Level Jet Systems Delineated by the Weather Bureau Special Pibal Network of 1961', Mon. Wea. Rev. 91, 573-582.Google Scholar
  17. LeMone, M. A., Grossman, R. L., Coulter, R. L., Wesley, M. L., Klazura, G. E., Poulos, G. S., Blumen, W., Lundquist, J. K., Cuenca, R. H., Kelly, S. F., Brandes, E. A., Oncley, S. P., McMillen, R. T., and Hicks, B. B.: 2000, 'Land-Atmosphere Interaction Research, Early Results, and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE', Bull. Amer. Meteorol. Soc. 81, 757-779.Google Scholar
  18. Lundquist, J. K.: 2000, The Evening Transition of the Atmospheric Boundary Layer: Inertial Oscillations, and Boundary-Layer Dynamics, Ph.D. Dissertation, University of Colorado at Boulder, 180 pp.Google Scholar
  19. Mahrt, L.: 1998, 'Stratified Atmospheric Boundary Layers and Breakdown of Models', J. Theor. Comp. Fluid Dyn. 11, 263-280.Google Scholar
  20. Mahrt, L.: 1999, 'Stratified Atmospheric Boundary Layers', Boundary-Layer Meteorol. 90, 375-396.Google Scholar
  21. Mahrt, L. and Vickers, D.: 2002, 'Contrasting Vertical Structures of Nocturnal Boundary Layers', Boundary-Layer Meteorol. 105, 351-363.Google Scholar
  22. Mitchell, M. J., Arritt, R. W., and Labas, K.: 1995, 'A Climatology of the Warm Season Great Plains Low-Level Jet Using Wind Profiler Observations', Wea. Forecast. 10, 576-591.Google Scholar
  23. Newsom, R. K. and Banta, R. M.: 2002, 'Shear-Flow Instability in the Stable Nocturnal Boundary Layer as Observed by Doppler Lidar during CASES-99', J. Atmos. Sci., in press.Google Scholar
  24. Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R. M., Newsom, R. K., Cuxart, J., Terradellas, E., Balsley, B., and Jensen, M.: 2002, 'CASES-99, A Comprehensive Investigation of the Stable Nocturnal Boundary Layer', Bull. Amer. Meteorol. Soc. 83, 555-581.Google Scholar
  25. Smedman, A. S.: 1988, 'Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer', Boundary-Layer Meteorol. 44, 231-253.Google Scholar
  26. Stensrud, D. J.: 1996, 'Importance of Low-Level Jets to Climate: A Review', J. Climate 9, 1698-1711.Google Scholar
  27. Sun, J., Burns, S. P., Lenschow, D. H., Banta, R., Newsom, R., Coulter, R., Frasier, S., Ince, T., Nappo, C., Cuxart, J., Blumen,W., Lee, X., and Hu, X.-Z.: 2002, 'Intermittent Turbulence Associated with a Density Current Passage in the Stable Boundary Layer', Boundary-Layer Meteorol. 105, 199-219.Google Scholar
  28. Thorpe, A. J. and Guymer, T. H.: 1977, 'The Nocturnal Jet', Quart. J. Roy. Meteorol. Soc. 103, 633-653.Google Scholar
  29. Whiteman, C. D., Bian, X., and Zhong, S.: 1997, 'Low-Level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains', J. Appl. Meteorol. 36, 1363-1376.Google Scholar
  30. Wulfmeyer, V. O., Randall, M., Brewer, W. A., and Hardesty R. M.: 2000, '2 µm Doppler Lidar Transmitter with High Frequency Stability and Low Chirp', Opt. Lett. 25, 1228-1230.Google Scholar
  31. Zhong, S., Fast, J. D., and Bian, X.: 1996, 'A Case Study of the Great Plains Low-Level Jet Using Wind Profiler Network Data and a High-Resolution Mesoscale Model', Mon. Wea. Rev. 124, 785-806.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R.M. Banta
    • 1
  • R. K. Newsom
    • 2
  • J. K. Lundquist
    • 3
  • Y. L. Pichugina
    • 2
  • R. L. Coulter
    • 4
  • L. Mahrt
    • 5
  1. 1.Environmental Technology Laboratory/NOAABoulderU.S.A
  2. 2.Cooperative Institute for Research in the AtmosphereFt. CollinsU.S.A
  3. 3.Program in Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderU.S.A
  4. 4.Argonne National LaboratoryU.S.A
  5. 5.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisU.S.A

Personalised recommendations