Journal of Biological Physics

, Volume 28, Issue 2, pp 163–172 | Cite as

Infrared Study of Carbon Monoxide Migration among Internal Cavities of Myoglobin Mutant L29W

  • G.U. Nienhaus
  • K. Nienhaus

Abstract

Myoglobin, a small globular heme protein that binds gaseous ligands such asO2, CO and NO reversibly at the heme iron, provides an excellent modelsystem for studying structural and dynamic aspects of protein reactions. Flashphotolysis experiments, performed over wide ranges in time and temperature, reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. Our recent studies of carbonmonoxy-myoglobin (MbCO) mutant L29W, using time-resolved infrared spectroscopy in combination with x-ray crystallography, have correlated kinetic intermediates with photoproduct structures that are characterized by the CO residing in different internal protein cavities, so-called xenon holes. Here we have used Fourier transform infrared temperature derivative spectroscopy (FTIR-TDS) to further examine the role of internal cavities in the dynamics. Different cavities can be accessed by the CO ligands at different temperatures, and characteristic infrared absorption spectra have been obtained for the different locations of the CO ligand within the protein, enabling us to monitor ligand migration through the protein as well as conformational changes of the protein.

FTIR spectroscopy ligand binding myoglobin temperature derivative spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonini, E. and Brunori, M.: Hemoglobin and Myoglobin in their Reactions with Ligands, North-Holland, Amsterdam, 1971.Google Scholar
  2. 2.
    Dickerson, R.E. and Geis, I.: Hemoglobin: Structure, Function, Evolution, and Pathology, Benjamin/Cummings, Menlo Park, CA, 1983.Google Scholar
  3. 3.
    Stryer, L.: Biochemistry, Freeman Publications, San Francisco, Fourth edition, 1995.Google Scholar
  4. 4.
    Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I.C.: Dynamics of Ligand Binding to Myoglobin, Biochemistry 14, (1975), 5355–5373.PubMedGoogle Scholar
  5. 5.
    Elber, R. and Karplus, M.: Enhanced Sampling in Molecular Dynamics: Use of the Timedependent Hartree Approximation for a Simulation of Carbon Monoxide Diffusion through Myoglobin. J. Am. Chem. Soc. 112 (1990), 9161–9175.Google Scholar
  6. 6.
    Scott, E.E. and Gibson, Q.H.: Ligand Migration in Sperm Whale Myoglobin, Biochemistry 36 (1997), 11909–11917.Google Scholar
  7. 7.
    Tilton, R.F., Kuntz, I.D. and Petsko, G.A.: Cavities in Proteins: Structure of a Metmyoglobinxenon Complex Solved to 1.9 Å Resolution, Biochemistry 23 (1984), 2849–2857.Google Scholar
  8. 8.
    Schlichting, I., Berendzen, J., Phillips, G.N. and Sweet, R.M.: Crystal Structure of Photolysed Carbonmonoxy-myoglobin, Nature 371 (1994), 808–812.Google Scholar
  9. 9.
    Teng, T., Srajer, V. and Moffat, K.: Photolysis-Induced Structural Changes in Single Crystals of Carbonmonoxy Myoglobin at 40 K, Nature Struct. Biol. 1 (1994), 701–705.Google Scholar
  10. 10.
    Hartmann, H., Zinser, S., Komninos, P., Schneider, R.T., Nienhaus, G.U. and Parak, F.: X-ray Structure Determination of a Metastable State of Carbonmonoxy Myoglobin after Photodissociation, Proc. Natl. Acad. Sci. USA 93 (1996), 7013–7016.Google Scholar
  11. 11.
    Brunori, M., Vallone, B., Cutruzzolà, F., Travaglini-Allocatelli, C., Berendzen, J., Chu, K., Sweet, R.M. and Schlichting, I.: The Role of Cavities in Protein Dynamics: Crystal Structure of a Photolytic Intermediate of a Mutant Myoglobin, Proc. Natl. Acad. Sci. USA 97 (2000), 2058–2063.Google Scholar
  12. 12.
    Ostermann, A., Waschipky, R., Parak, F.G. and Nienhaus, G.U.: Ligand Binding and Conformational Motions in Myoglobin, Nature 404 (2000), 205–208.Google Scholar
  13. 13.
    Chu, K., Vojtchovsky, J., McMahon, B.H., Sweet, R.M., Berendzen, J. and Schlichting, I.: Structure of a Ligand-Binding Intermediate in Wild-Type Carbonmonoxy Myoglobin, Nature 403 (2000), 921–923.Google Scholar
  14. 14.
    Hirota, S., Li, T., Phillips, G.N., Olson, J.S., Mukai, M. and Kitagawa, T.: Perturbation of the Fe-O2 Bond by Nearby Residues in Heme Pocket: Observation of v FeO 2 Raman Bands for Oxymyoglobin Mutants, J. Am. Chem. Soc. 118 (1996), 7845–7846.Google Scholar
  15. 15.
    Šrajer, V., Teng, T., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., Bourgeois, D., Wulff, M. and Moffat, K.: Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography, Science 274 (1996), 1726–1729.Google Scholar
  16. 16.
    Springer, B.A., Egeberg, K.D., Sligar, S.G., ROWS, R.J., Mathews, A.J. and Olson, J.S.: Discrimination Between Oxygen and Carbon Monoxide and Inhibition of Autooxidation by Myoglobin. Site-Directed Mutagenesis of the Distal Histidine, J. Biol. Chem. 264 (1989), 3057–3060.Google Scholar
  17. 17.
    Oldfield, E., Guo, K., Augspurger, J.D. and Dykstra, C.E.: A Molecular Model for the Major Conformational Substates in Heme Proteins, J. Am. Chem. Soc. 113 (1991), 7537–7541.Google Scholar
  18. 18.
    Kushkuley, B. and Stavrov, S.S.: Theoretical Study of the Distal-Side Steric and Electrostatic Effects on the Vibrational Characteristics of the FeCO Unit of the Carbonylheme Proteins and Their Models, Biophys. J. 70 (1996), 1214–1229.Google Scholar
  19. 19.
    Braunstein, D.P., Chu, K., Egeberg, K.D., Frauenfelder, H., Mourant, J.R., Nienhaus, G.U., Ormos, P., Sligar, S.G., Springer, B.A. and Young, R.D.: Ligand Binding to Heme Proteins: III. FTIR studies of His-E7 and Val-E11 Mutants of Carbonmonoxymyoglobin, Biophys. J. 65 (1993), 2447–2454.Google Scholar
  20. 20.
    Li, T., Quillin, M.L., Phillips, G.N. and Olson, J.S.: Structural Determinants of the Stretching Frequency of CO Bound to Myoglobin, Biochemistry 33 (1994), 1433–1446.Google Scholar
  21. 21.
    Phillips, G.N., Teodoro, M.L., Li, T., Smith, B. and Olson, J.S.: Bound CO is aMolecular Probe of Electrostatic Potential in the Distal Pocket of Myoglobin, J. Phys. Chem. B 103 (1999), 8817–8829.Google Scholar
  22. 22.
    Frauenfelder, H., Sligar, S.G. and Wolynes, P.G.: The Energy Landscapes and Motions of Proteins, Science 254 (1991), 1598–1603.PubMedGoogle Scholar
  23. 23.
    Nienhaus, G.U., Heinzl, J., Huenges, E. and Parak, F.: Protein Crystal Dynamics Studied by Time-Resolved Analysis of X-ray Diffuse Scattering, Nature 338 (1989), 665–666.Google Scholar
  24. 24.
    Kneller, G.R. and Smith, J.C.: Liquid-Like Side-Chain Dynamics in myoglobin, J. Mol. Biol. 242 (1994), 181–185.Google Scholar
  25. 25.
    Berendzen, J. and Braunstein, D.: Temperature-Derivative Spectroscopy: A Tool for Protein Dynamics, Proc. Natl. Acad. Sci. USA 87 (1990), 1–5.Google Scholar
  26. 26.
    Mourant, J.R., Braunstein, D.P., Chu, K., Frauenfelder, H., Nienhaus, G.U., Ormos, P. and Young, R.D.: Ligand Binding to Heme proteins: II. Transitions in the Heme Pocket of Myoglobin, Biophys. J. 65 (1993), 1496–1507.Google Scholar
  27. 27.
    Nienhaus, G.U., Mourant, J.R., Chu, K. and Frauenfelder, H.: Ligand Binding to Heme Proteins. The Effect of Light on Ligand Binding in Myoglobin, Biochemistry 33 (1994), 13413–13430.Google Scholar
  28. 28.
    Nienhaus, K., Lamb, D.C., Deng, P. and Nienhaus, G.U.: The Effect of Ligand Dynamics on Heme Electronic Transitions in Myoglobin, Biophys. J. (2001), submitted.Google Scholar
  29. 29.
    Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: Ligand Migration among Protein Cavities Studied by FTIR-TDS Spectroscopy, J. Mol. Biol. (2001), submitted.Google Scholar
  30. 30.
    Alben, J.O., Beece, D., Bowne, S.F., Doster, W., Eisenstein, L., Frauenfelder, H., Good, D., McDonald, J.D., Marden, M.C., Moh, P.P., Reinisch, L., Reynolds, A.H., Shyamsunder, E. and Yue, K.T.: Infrared Spectroscopy of Photodissociated Carboxymyoglobin at Low Temperatures, Proc. Natl. Acad. Sci. USA 79 (1982), 3744–3748.Google Scholar
  31. 31.
    Johnson, J.B., Lamb, D.C., Frauenfelder, H., Muller, J.D., McMahon, B.H., Nienhaus, G.U. and Young, R.D.: Ligand Binding to Heme Proteins. VI. Interconversion of Taxonomic Substates in Carbonmonoxy Myoglobin, Biophys. J. 71 (1996), 1563–1573.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G.U. Nienhaus
    • 1
    • 2
  • K. Nienhaus
    • 1
  1. 1.Department of BiophysicsUniversity of UlmUlmGermany
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations