Optical and Quantum Electronics

, Volume 34, Issue 9, pp 841–858 | Cite as

Coherent bisection of 141 THz using sum frequency generation of 1064 and 709 nm radiation

  • John J. McFerran
  • Andre N. Luiten
Article

Abstract

The frequency interval (141 THz) that exists between 1064 nm radiation and the unusual semiconductor wavelength of 709 nm has been coherently divided by using an optical phase-locked loop to control a slave laser lying at the mean frequency of these two wavelengths. The 709 nm radiation has been generated by a combination of wavelength tuning in an extended cavity and temperature tuning of a ridge-waveguide semiconductor laser with a nominal wavelength of 728 nm. Two nonlinear processes have been used to produce the coherent division: the sum frequency mixing of 1064 and 709 nm radiation to produce 425 nm radiation and the second harmonic generation of 851 nm light to produce the same wavelength radiation.

frequency chain laser diode optical frequency interval divider phase-lock loop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S.B. Optical Communication Receiver Design, SPIE Optical Engineering Press, London, Vol. 124, 1997.Google Scholar
  2. Bradley, C.C., J. Chen and R.G. Hulet. Review of Scientific Instruments 61 2097, 1990.Google Scholar
  3. Cowie, L.L. and A. Songaila. The Astrophysical Journal 453 596, 1995.Google Scholar
  4. Diddams, S.A., D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzworth, T. Udem and T.W. Hänsch. Physical Review Letters 84 5102, 2000.Google Scholar
  5. Dzuba, V.A., V.V. Flambaum and J.K. Webb. Physical Review Letters 82 888, 1999.Google Scholar
  6. Eikema, K.S.E., J. Walz and T. Hänsch, Physical Review Letters 83 3828, 1999.Google Scholar
  7. Ell, R., U. Morgner, F.X. Krtner, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M.J. Lederer, A. Boiko and B. Luther-Davies, Optics Letters 26 373, 2001.Google Scholar
  8. Helmcke, J. Proceedings of the SPIE 3052 2, 1996.Google Scholar
  9. Holzwarth, R., T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth and P.S. Russell. Physical Review Letters 85 2264, 2000.Google Scholar
  10. Jacobsen, G., H. Olesen, F. Birkedahl and B. Tromborg. Electronics Letters 18 874, 1982.Google Scholar
  11. Kazovsky, L.G. Journal of Lightwave Technology 4 182, 1986.Google Scholar
  12. Kovacich, R.P. The Precision of Modern Phase Coherent Optical to Microwave Frequency Chains, University of Western Australia, Perth, Vol. 106, 2001.Google Scholar
  13. Kovacich, R.P. and A.N. Luiten. 13th European Frequency and Time Forum and 1999 IEEE International Frequency Control Symposium, 1999.Google Scholar
  14. Luiten, A.N. Topics in Applied Physics, 79, Accurate Optical Frequency Synthesis, Springer, Berlin, p. 337, 2000.Google Scholar
  15. Luiten, A., R. Kovacich and J. McFerran IEEE Transactions on Instrumentation and Measurement, 48 (2) 558, 1999.Google Scholar
  16. Ohtsu, M. Highly Coherent Semiconductor Lasers, Artech House, Boston, 7, 1992a.Google Scholar
  17. Ohtsu, M. Highly Coherent Semiconductor Lasers, Artech House, Boston, 318, 1992b.Google Scholar
  18. Petermann, K. Laser diode modulation and noise, Kluwer Academic Publishers, Netherlands, Vol. 274, 1988.Google Scholar
  19. Prestage, J.D., R.L. Tjoelker and L. Maleki, Physical Review Letters 74 3511, 1995.Google Scholar
  20. Reichert, J.R. Holzwarth, T. Udem and T.W. Hänsch, Optics Communications 172 59, 1999.Google Scholar
  21. Santarelli, G., A. Clairon, S.N. Lea and G.M. Tino, Optics Communications 104 339, 1994.Google Scholar
  22. Shoemaker, D., A. Brillet, C.N. Man, O. Crégut and G. Kerr, Optics Letters 14 609, 1989.Google Scholar
  23. Stace, T., A.N. Luiten and R.P. Kovacich, Measurement Science and Technology 9 (9) 1635, 1998.Google Scholar
  24. Stenger, J., T. Binnewies, G. Wilpers, F. Riehle, H.R. Telle, J.K. Ranka, R.S. Windeler and A.J. Stentz, Physical Review A 63 021802, 2001.Google Scholar
  25. Sutherland, R.L. Handbook of Nonlinear Optics, Marcel Dekker, New York, Vol. 49, 1996.Google Scholar
  26. Telle, H.R., D. Meschede and T.W. Hänsch, Optics Letters 15 532, 1990.Google Scholar
  27. Udem, T., S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J. C.Berquist and L.Hollberg, Los Alamos National Laboraties arXiv.org, physics/0101029, 2001.Google Scholar
  28. Udem, T., A. Huber, M. Weitz, D. Leibfried, W. König, M. Prevedelli, A. Dimitriev, H. Geiger and T.W. Hänsch. IEEE Transactions on Instrumentation and Measurement 46 166, 1997.Google Scholar
  29. Udem, T., J. Reichert, T.W. Hänsch and M. Kourogi, Optics Letters 23 1387, 1998.Google Scholar
  30. Udem, T., J. Reichert, R. Holzwarth and T.W. Hänsch, Optics Letters 24 881, 1999.Google Scholar
  31. Udem, T., J. Reichert, R. Holzwarth, M. Niering, M. Weitz and T. Hänsch. Topics in Applied Physics, 79, Measuring the Frequency of Light with Mode-Locked Lasers, Springer, Berlin, p.275, 2000.Google Scholar
  32. Webb, J.K., V.V. Flambaum, C.W. Churchill, M.J. Drinkwater and J.D. Barrow, Physical Review Letters 82 884, 1999.Google Scholar
  33. Wolff, S., D. Messerschmidt and H. Fouckhardt, Optics Express 5 32, 1999.Google Scholar
  34. Wynands, R., T. Mukai and T.W. Hänsch, Optics Letters 17 1749, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • John J. McFerran
    • 1
  • Andre N. Luiten
    • 1
  1. 1.Department of PhysicsUniversity of Western AustraliaWestern AustraliaAustralia

Personalised recommendations