Water, Air and Soil Pollution: Focus

, Volume 2, Issue 3, pp 123–140 | Cite as

Chemical Changes in Sediment Pore-Waters of an Acidic Mining Lake After Addition of Organic Substrate and Lime for Stimulating Lake Remediation

  • P. Herzsprung
  • K. Friese
  • R. Frömmichen
  • J. Göttlicher
  • M. Koschorreck
  • W. V. TümplingJr.
  • K. Wendt-Potthoff
Article

Abstract

In the past five years, enclosures have beeninstalled in an acidic mining lake in Lusatia to investigate insitu remediation processes. They were treated with straw, withstraw and Carbokalk, or with Carbokalk alone, where Carbokalkis a by-product of the sugar industry (solid precipitate ofnon-sugars after lime clarification of extracted sugar beetjuice). Sediment samples were taken as cores to get informationabout the behaviour of organic and inorganic components insediment pore-water with depth. Vertical distributions of pH,soluble reactive phosphate, nitrate, ammonium, silica,aluminium, iron, manganese, calcium, magnesium, sodium,potassium, sulphate, and DOC were measured. The resultingprofiles, each consisting of 15 data points at differentdepths, were compared by cluster analysis. The similarities ofsediment cores from different treated enclosures relating toprofiles of chemical components were discussed. Increasedconcentrations of potassium and sulphate were found in pore-water after substrate treatment. The data imply dissolution ofpotassium iron sulphate hydroxide minerals (jarosite) after anincrease of pH caused by dissolution of lime and by sulphatereducing processes which were stimulated by organic substrateaddition.

acidic mining lakes cluster analysis jarositedissolution in situ remediation sediment pore-water chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L., and Wolf, M.: 1996, ‘Schwertmannite and the chemical modeling of iron in acid sulphate waters’, Geochim. Cosmochim. Acta 60, 2111–2121.Google Scholar
  2. Blowes, D. W., and Jambor, J. L.: 1990, ‘The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada’, Appl. Geochem. 5, 327–346.Google Scholar
  3. Büttner, O., Becker, A., Kellner, S., Kuehn, B., Wendt-Potthoff, K., Zachmann, D.W., and Friese, K.: 1998, ‘Geostatistical analysis of surface sediments in an acidic mining lake’, Water, Air, and Soil Pollut. 108, 297–316.Google Scholar
  4. Cravotta, C. A. I. and Trahan, M. K.: 1999, ‘Limestone drains to increase pH and remove dissolved metals from acidic mine drainage’, Appl. Geochem. 14, 581–606.Google Scholar
  5. Everitt, B.S.: ‘Cluster Analysis’, Heinemann, London 1974.Google Scholar
  6. Evangelou, V.P.: 1998, ‘Pyrite chemistry: the key for abatement of acid mine drainage’, in W. Geller, H. Klapper, and W. Salomons (eds.), Acid Mining Lakes - Acid Mine Drainage, Limnology and Reclamation, Environ. Sci. Series. Springer, Berlin, Germany, pp. 197–222.Google Scholar
  7. Foucher, S., Battaglia-Brunet, F., Ignatiadis, I. and Morin, D.: 2001, ‘Treatment by sulphate reducing bacteria of Chessy acid-mine drainage and metals recovery’, Chem. Eng. Sci. 56, 1639–1645.Google Scholar
  8. Friese, K., Wendt-Potthoff, K., Zachmann, D.W., Fauville, A., Mayer, B. and Veizer, J.: 1998, ‘Biogeochemistry of iron and sulfur in sediments of an acidic mining lake in Lusatia, Germany’, Water, Air, and Soil Pollut. 108, 231–247.Google Scholar
  9. Frömmichen, R.: 2001, ‘In situ-Sanierungsstrategie zur Förderung der mikrobiellen Entsäuerung von geogen schwefelsauren Bergbaurestseen-Mesokosmosstudien’, Ph. D. Thesis. Technical University of Dresden. UFZ-Bericht. 12/2001, 155 p.Google Scholar
  10. Frömmichen, R., Koschorreck, M., Wendt-Potthoff, K. and Friese, K.: 2001, ‘Neutralization of acidic mining lakes via in situ stimulation of bacteria’, in: Leeson, A., Peyton, B., Means, J., Magar, V. S. (eds.), Bioremediation of Inorganic Compounds -6 (9), Battelle Press, 43–53.Google Scholar
  11. Frömmichen R., K. Wendt-Potthoff, K. Friese and H. Klapper: 2000a, ‘Verfahren zur mikrobiellen Sanierung von schwefelsauren Bergbaurestseen’, German Pate and Application. DE 199 07 002 A1.Google Scholar
  12. Frömmichen R., Wendt-Potthoff, K. Friese, K. and Klapper, H.: 2000b, ‘Method for microbially cleaning up sulphuric-acid residual mining pools’, PCT Pate and Application. WO 00/48949.Google Scholar
  13. Furrer G. and Wehrli, B.: 1996, ‘Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters of a eutrophic lake’, Geochim. Cosmochim. Acta 43, 1075–1090.Google Scholar
  14. Geller, W., Klapper, H. and Schultze, M. 1998, ‘Natural and anthropogenic sulfuric acidification of lakes’, in W. Geller, H. Klapper, and W. Salomons (eds.), Acid Mining Lakes - Acid Mine Drainage, Limnology and Reclamation, Environ. Sci. Series. Springer, Berlin, Germany, pp. 3–14.Google Scholar
  15. Gazea, B., Adam, K. and Kontopoulos, A.: 1996, ‘A review of passive systems for the treatment of acid mine drainage’, Minerals Engineering 9, 23–42.Google Scholar
  16. Glombitza, F.: 2001, ‘Treatment of acid lignite mine flooding water by means of microbial sulphate reduction’, Waste Managment 21, 197–203.Google Scholar
  17. Göttlicher J. and Gasharova B.: 2000, ‘Interactions of iron and sulfur bearing solid phases with water in surface coal mining lakes’, in: D. Rammlmair, J. Mederer, Th. Oberthür, R. B. Heimann and H. Pentinghaus (eds.), Applied Mineralogy in Research, Economy, Technology, Ecology and Culture, 2000, Balkema, Rotterdam, Volume 2, 557–560.Google Scholar
  18. Herzsprung, P., Friese, K., Packroff, G., Schimmele, M., Wendt-Potthoff, K. and Winkler, M.: 1998, ‘Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes’, Acta Hydrochim. Hydrobiol. 26, 253–262.Google Scholar
  19. Klapper, H., Friese, K., Scharf, B., Schimmele, M. and Schultze, M. 1998, ‘Ways of Controlling Acid by Ecotchnology’, in W. Geller, H. Klapper and W. Salomons (eds.), Acid Mining Lakes - Acid Mine Drainage, Limnology and Reclamation, Environ. Sci. Series. Springer, Berlin, Germany, pp. 401–416.Google Scholar
  20. Koschorreck, M. and Wendt-Potthoff, K.: 2000, ‘Mikrobiologische Untersuchungen in Enclosures zur in situ-Neutralisierung eines sauren Bergbaurestsees (Restloch 111)’, in: Friese, K., von Tüm-pling, W. (Hrsg.), Biologische und chemische Entwicklung von Bergbaurestseen, Statusbericht 1998/1999. UFZ-Bericht 26/2000, ISSN 0948-9452, 220–228.Google Scholar
  21. Koschorreck, M., Frömmichen, R., Herzsprung, P., Tittel, J., and Wendt-Potthoff, K: 2001, ‘The function of straw for in situ remediation of acidic mining lakes: results from an enclosure experiment’, Water, Air and Soil Pollut., this vol.Google Scholar
  22. Lazzaretti-Ulmer, M. A. and Hanselmann, K. W.: 1999, ‘Seasonal variation of the microbially regulated buffering capacity at sediment-water interfaces in a freshwater lake’, Aquat. Sci. 61, 59–74.Google Scholar
  23. Monterroso, C., Alvarez, E. and Macias, F.: 1994, ‘Speciation and solubility controls of Al and Fe in minesoil solutions’, Sci. Total Environ. 158, 31–43.Google Scholar
  24. Nordstrom, D. K.: 1982, ‘Aqueous pyrite oxidation and the consquent formation of secondary iron minerals’, in: Kittrick, J. A., Fanning, D. S., Hossner L. R. (eds.), Acid sulfate weathering. Proceedings of a symposium sponsored by Divisions S-9, S-2, S-5, and S-6 of the Soil Science Society of America in Fort Collins, 5-10 Aug. 1979. (SSSA Special Publication Number 10) Colorado, pp. 37–56.Google Scholar
  25. Nordstrom, D. K. and Ball, J. W.: 1986, ‘The geochemical behaviour of aluminium in acidified water’, Science 232, 54–56.Google Scholar
  26. Parkhurst, D. L. and Appelo, C. A. J.: 1999, ‘PHREEQC-2.4 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations’, U.S. Geological Survey, Water-Resources Investigations Report 99–4259.Google Scholar
  27. Pedersen, T. F., Mueller, B., Mc Nee, J. J. and Pelletier, C. A.: 1993, ‘The early diagenesis of submerged sulfide-rich mine tailings in Anderson Lake, Manitoba’, Can. J. Earth Sci. 30, 1099–1109.Google Scholar
  28. Peine, A. and Peiffer, S.: 1996, ‘Neutralisation processes in acid mine lake sediments’, Arch. Hydrobiol. 48, 261–267.Google Scholar
  29. Shum, M. and Lavkulich, L.: 1999, ‘Speciation and solubility relationships of Al, Cu and Fe in solutions associated with sulfuric acid leached mine waste rock’, Environ. Geology 38, 59–68.Google Scholar
  30. Urban, N. R., Dinkel, C. and Wehrli, B.: 1997, ‘Solute transfer across the sediment surface of an eutrophic lake: I. Porewater profiles from dialysis samplers’, Aquat. Sci. 59, 1–25.Google Scholar
  31. Wendt-Potthoff, K. and Neu, T. R.: 1998, ‘Microbial processes for in situ remediation of acidic lakes’, in W. Geller, H. Klapper, and W. Salomons (eds.), Acidic Mining Lakes Acid Mine Drainage, Limnology and Reclamation, Environ. Sci. Series. Springer, Berlin, Germany, pp. 269–284.Google Scholar
  32. Wendt-Potthoff, K., Frömmichen, R., Herzsprung, P. and Koschorreck, M.: 2001, ‘Microbial Fe(III) reduction in acidic mining lake sediments after addition of an organic substrate and lime’, Water, Air and Soil Pollut., this vol.Google Scholar
  33. Winland, R. L., Traina, S. J. and Bigham, J. M.: 1991, ‘Chemical composition of ochreous precipitates from Ohio Coal Mine Drainage’, J. Environ. Quality 20, 452–460.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • P. Herzsprung
    • 1
  • K. Friese
    • 1
    • 2
  • R. Frömmichen
    • 1
  • J. Göttlicher
    • 3
  • M. Koschorreck
    • 1
  • W. V. TümplingJr.
    • 1
  • K. Wendt-Potthoff
    • 1
  1. 1.Department for Inland Water ResearchUFZ-Centre for Environmental Research Leipzig-Halle Ltd.MagdeburgGermany
  2. 2.UFOP-Universidade Federal de Ouro PretoOuro Preto, MGBrazil
  3. 3.Forschungszentrum Karlsruhe ITC-WGTEggenstein-LeopoldshafenGermany

Personalised recommendations