Plant and Soil

, Volume 243, Issue 1, pp 91–102

Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus)

  • Ramachandran Muthukumarasamy
  • Gopalakrishnan Revathi
  • Ponnusamy Loganathan


We investigated whether Acetobacter diazotrophicus (syn.Gluconacetobacter diazotrophicus) could be recovered only from sugarcane plants either with low or no application of fertiliser N. We report here the enrichment and enumeration of A. diazotrophicus from high N-fertilised samples where high heterotrophic populations reduce the numbers of A. diazotrophicus ultimately diminshing its isolation frequency as reported earlier. The growth medium of micropropagated sugarcane seedlings of the varieties Co 8021, Co 86249, Co 86010, Co 86032, and Co 87025 was amended with potassium nitrate, ammonium nitrate, ammonium chloride and urea. The colonisation and AR activity of A. diazotrophicus were affected in the presence of high levels (25 mM) of ammonium chloride and ammonium nitrate but remained unaffected in low levels of N (i.e 1/10th of MS liquid medium) and with high levels of potassium nitrate (25 mM) and urea (500 ppm). A. diazotrophicus was detected in the inoculated plants both at low and high levels of N based on the amplification of a specific 16S rRNA gene fragment using PCR based method targeting a stretch of 445 bp with primers AC and DI. High levels of N in the growth medium induced morphological changes on A. diazotrophicus cells resulting in long pleomorphic cells. The percentage of pleomorphic cells was in the decending order from NH4NO3, NH4Cl, KNO3, and urea. These changes were more prominent in ammonium chloride and ammonium nitrate than potassium nitrate, urea and N free medium. The morphological changes and the increased heterotrophic populations may play a role on the survival ofA. diazotrophicus in high N-fertilised samples/environments.

Acetobacter diazotrophicus fertiliser N heterotrophs in vitro colonisation micropropagated sugarcane plantlets pleomorphic cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barraquio W L, Revilla L and Ladha J K 1997 Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194, 15–24.Google Scholar
  2. Becking J H 1985 Pleomorphism in Azospirillum. In Azospirillum III Genetics Physiology Ecology. Ed. W Klingmuller. pp 243–262. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  3. Boddey R M, Polidoro J C, Resende A S, Alves B J R and Urquiaga S 2001 Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Aust. J. Plant Physiol. 28, 889–895.Google Scholar
  4. Caballero-Mellado J and Martinez-Romero E 1994 Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl. Environ. Microbiol. 60, 1532–1537.Google Scholar
  5. Caballero-Mellado J, Fuentes-Ramirez L E, Reis, V M and Martinez-Romero E 1995 Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl. Environ. Microbiol. 61, 3008–3013.Google Scholar
  6. Cavalcante V A and Dobereiner J 1988 A new acid-tolerant bacterium associated with sugarcane. Plant Soil 108, 23–31.Google Scholar
  7. da Silva L G, Reis V M, dos Reis F B and Boddey R. M 1995 Ontogenic variation of diazotrophic bacteria in sugarcane (Saccharum spp.) tissues. In International Symposium on Sustainable Agricullture for the Tropics-the Role of Biological Nitrogen Fixation. Eds. R M Boddey and A S de Resends. pp 234–235. EMBRAPA, Rio de Janeiro.Google Scholar
  8. Dobereiner J, Reis R M, Paula M A and Olivares F 1993 Endophytic diazotrophs in sugarcane, cereals and tuber plants. In New Horizons in Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp 671–676. Kluwer Academic Publishers, Dordrecht.Google Scholar
  9. Fu H and Burris R H 1989 Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae. J. Bacteriol. 171, 3168–3175.Google Scholar
  10. Fuentes-Ramirez L E, Jimenez-Sagado T, Abarca-Ocampo I R and Caballero-Mellado J 1993 Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154, 145–150.Google Scholar
  11. Fuentes-Ramirez L E, Caballero-Mellado J, Sepulveda J and Martinez-Romero E 1999 Colonisation of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilisation. FEMS. Microbiol. Ecol. 29, 117–128.Google Scholar
  12. Fuentes-Ramirez L E, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E and Caballero-Mellado J 2001 Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp.nov., associated with coffee plants. Int. J. Syst. Evol. Microbiol. 51, 1305–1314.Google Scholar
  13. Flores-Encarnacion M, Contreras-Zentella M, Soto-Urzua L, Aguilar G R, Baca B E and Escamilla E 1999. The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J. Bacteriol. 181, 6987–6995.Google Scholar
  14. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt R M, Stephan M P, Teixeira K R S, Dobereiner J and De Ley J 1989 Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacteriol. 39, 361–364.Google Scholar
  15. Gyaneshwar P, James E K, Mathan N, Reddy P M, Reinhold-Hurek B and Ladha J K 2001 Endophytic colonisation of rice by a diazotrophic strain of Serratio marcescens. J. Bacteriol. 183(8), 2634–2645.Google Scholar
  16. Hartmann A H, Fu A and Burris R H 1986 Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J. Bacteriol. 165, 864–870.Google Scholar
  17. James E K, Reis V M, Olivares F L, Baldani J I and Dobereiner J 1994 Infection of sugarcane by the nitrogen fixing bacterium Acetobacter diazotrophicus. J. Expl. Bot. 45, 757–766.Google Scholar
  18. James E K, Olivares F L, de Oliveira A LM, dos Reis Junior F B, da Silva L G and Reis V M 2001 Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J. Expl. Bot. 52, 747–760.Google Scholar
  19. Jimenez-Salgado T, Fuentes-Ramirez L E, Tapia-Hernandez A, Mascarua M A, Martinez-Romero E and Caballero-Mellado J 1997 Coffea arabica L., a new host plant for Acetobacter diazotrophicus and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 63, 3676–3683.Google Scholar
  20. Kirchhof G, Reis V M, Baldani J I, Eckart B, Dobereiner J and Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194, 45–55.Google Scholar
  21. Kirchhof G, Baldani J I, Reis V M and Hartmann A (1998) Molecular assay to identify Acetobacter diazotrophicus and detect its occurrence in plant tissues. Can. J. Microbiol. 44, 12–19.Google Scholar
  22. Kolb W and Martin P 1988 Influence of nitrogen on the number of N2 fixing and total bacteria in the rhizosphere. Soil Biol. Biochem. 20, 221–225.Google Scholar
  23. Kanemoto R H and Ludden P W 1984 Effect of ammonium, darkness and phenzine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J. Bacteriol. 158, 713–720.Google Scholar
  24. Ladha J K, Barraquio W L and Watanabe I 1982 Immunological technique for identifying Azospirillum associated with wetland rice. Can. J. Microbiol. 29, 1301–1308.Google Scholar
  25. Li R-P and MacRae I C 1991 Specific association of diazotrophic acetobacters with sugarcane. Soil Biol. Biochem. 23, 999–1002.Google Scholar
  26. Li R-P and MacRae I C 1992 Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol. Biochem. 24, 413–419.Google Scholar
  27. Loganathan P, Sunitha R, Prida A K and Nair S 1999 Isolation and characterisation of genetically two distant group of Acetobacter diazotrophicus from new host plant (Eleusine coracona L.). J. Appl. Bacteriol. 86, 1053–1058.Google Scholar
  28. Muthukumarasamy R, Revathi G and Lakshminarasimhan C 1999a Diazotrophic associations in sugarcane cultivation in South India. Trop. Agri (Trinidad). 76, 171–178.Google Scholar
  29. Muthukumarasamy R, Revathi G and Lakshminarasimhan C 1999b Influence of N-fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol. Fertil. Soils. 29, 157–164.Google Scholar
  30. Murashige T and Skoog F A 1962 Revised medium for rapid growth and bioassays with Tobacco tissue culture. Physiol. Plant. 15, 473–497.Google Scholar
  31. Olivares F L, Baldani V L D, Reis V M, Baldani J I and Dobereiner J 1996 Occurrence of the endophytic diazotroph Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol. Fertil. Soils. 2, 197–200.Google Scholar
  32. Reis V M, Olivares F L and Dobereiner J 1994 Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10, 101–104.Google Scholar
  33. Reis V M, Olivares F B, Oliveira A L M, Reis Junior F B, Baldani J I and Dobereiner J 1999 Technical approaches to inoculate micropropagated sugarcane plants by Acetobacter diazotrophicus. Plant Soil 206, 205–211.Google Scholar
  34. Reis Junior F B dos, Reis V M, Urquiaga S and Dobereiner J 2000a Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugarcane (Saccharum spp.). Plant Soil 219, 153–159.Google Scholar
  35. Reis Junior F B dos, Da Silva LG, Reis V M and Dobereiner J 2000b Occurrence of diazotrophic bacteria in different sugarcane genotypes. Pesq. Agropec., Brasilia. 35, 985–994.Google Scholar
  36. Rivera R, Velazco A and Treto E 1991 La fertilization (15N), nutricion nitrogenado y actividad de los micro-organisms nitro-fijadores en la cana de azucar. Cepa de cana Planta, Cultivada sobre suelo ferralitico rojo, Cultivos Tropicales 12, 21–28.Google Scholar
  37. Ruschel A P 1981 Associative N2 fixation by sugarcane. In Associative N2 fixation, Vol 2. Eds. P B Vose and A P Ruschel. pp 81–90. CRC Press, Baton Rouge.Google Scholar
  38. Sevilla M, de Oliveira A, Baldani J I and Kennedy C 1998. Contribution of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition. Symbiosis 25, 181–191.Google Scholar
  39. Sevilla M and Kennedy C 2000 Genetic analysis of N2–fixation and plant growth stimulating properties of Acetobacter diazotrophicus, an endophyte of sugarcane. In Prokaryotic Nitrogen Fixation. Ed. E Triplett. pp 737–760. Horizon Scientific Press, Wyndham, UK.Google Scholar
  40. Sevilla M, Burris R H, Gunapala N and Kennedy C 2001 Comparision of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif - mutant strains. Mole. Plant-Microbe Interact. 14 (3), 358–366.Google Scholar
  41. Sievers M, Schlegel H G, Caballero-Mellado J, Dobereiner J and Ludwig W 1998 Phylogenetic identification of two major nitrogen-fixing bacteria associated with sugarcane. Syst. Appl. Microbiol. 21, 505–508.Google Scholar
  42. Sokollek S J, Hertel C and Hammes W P 1998 Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int. J. Syst. Bacteriol. 48, 935–940.Google Scholar
  43. Souza E M, Pedrosa F O, Drummond M, Rigo L U and Yates M G 1999 Control of Herbaspirillum seropedicae nifA activity by ammonium ions and oxygen. J. Bacteriol. 181, 681–684.Google Scholar
  44. Sreenivasan J and Sreenivasan T V 1984 In vitro propagation of Saccharum officinarum and Sclerostachya fusca hybrid. Theor. Appl. Genet. 67, 171–174.Google Scholar
  45. Tapia-Hernandez A, Bustillos-Cristales M R, Jimenez-Salgado T, Caballero-Mellado J and Fuentes-Ramirez L E 2000 Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb. Ecol. 39, 49–55.Google Scholar
  46. Teixieira K R S, Manuela W, Theodore M, Galler R, Zellermann E M, Baldani J I, Kennedy C and Meletzus D 1999 Molecular analysis of the chromosomal region encoding the nifA and nifB genes of Acetobacter diazotrophicus. FEMS Microbiol Lett. 176, 301–309.Google Scholar
  47. Urquiaga S, Cruz K H S and Boddey R M 1992 Contribution of nitrogen fixation to sugarcane:nitrogen 15 and nitrogen balance estimates. Soil Sci. Soc. Am. J. 56, 105–114.Google Scholar
  48. Yamada Y, Hoshino K.-I and Ishikawa T 1998 Gluconacetobacter nom. corrig. (Gluconacetobacter (sic)). In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 64. Int. J. Syst. Bacteriol. 48, 327–328.Google Scholar
  49. Yoneyama T, Muraoka T, Kim T H, Decaney E V and Nakanishi Y 1997 The natural 15N abundance of sugarcane and neighbouring plants in Brazil, Philippines and Miyako (Japan). Plant Soil 189, 239–244.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ramachandran Muthukumarasamy
    • 1
  • Gopalakrishnan Revathi
    • 1
  • Ponnusamy Loganathan
    • 2
  1. 1.Main Bio-control Research Laboratory, (Unit of Tamilnadu Co-operative Sugar Federation)Chengalpattu –India
  2. 2.M.S. Swaminathan Research FoundationTaramani, ChennaiIndia

Personalised recommendations