Skip to main content
Log in

Thermal properties of post-consumer PET processed in presence of phosphites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thermal properties of recycled triphenylphosphite (TPP) chain extended poly(ethylene terephthalate) (PET) was investigated. As the TPP concentration increases, both reaction residues and molecular mass increase affecting significantly the thermal properties and crystallization behavior of the material. The presence of TPP residues did not affect the crystalline melt temperature (T m), but modified the glass transition temperature (T g), the crystallization temperature on heating (T hc) and the crystallization temperature on cooling (T cc). In the samples submitted to extraction with acetone, the properties were influenced by molecular mass changes, probably due to the presence of some insoluble reaction residue. The thermal stability of the sample purified by extraction after chain extension was comparable to that of the non-extended sample when heating was carried out under nitrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Jabarin and E. A. Logfren, Polym. Eng. Sci., 24 (1984) 1056.

    Google Scholar 

  2. M. Edge, N. S. Allen, R. Wiles, W. McDonald and S. V. Mortlock, Polym. Papers, 36 (1995) 227.

    Google Scholar 

  3. H. Zimmerman and N. T. Kim, Polym. Eng. Sci., 20 (1980) 680.

    Google Scholar 

  4. S. M. Aharoni, Intern. J. Polym. Mater., 26 (1994) 9.

    Google Scholar 

  5. B. Jacques, J. Devaux, R. Legras and E. Nield, Macromolecules, 29 (1996) 3129.

    Google Scholar 

  6. H. Inata and S. Matsumura, J. Appl. Polym. Sci., 32 (1986) 5193.

    Google Scholar 

  7. D. N. Bikiaris and G. P. Karayannids, J. Polym. Sci.: Part A: Polym. Chem., 34 (1996) 1337.

    Google Scholar 

  8. K. Schwetlick and W. D. Habicher, Die Angew. Makromol. Chemie, 232 (1995) 239.

    Google Scholar 

  9. T. H. Austin, K. D. Berlin, E. R. De Sombre, R. G. Harvey, M. Nagabhushanam, S. Ohashi, M. Peterson and M. M. Rauhut, Topics in Phosphorous Chemistry, John Wiley & Sons, New York 1964, Vol. 1, p. 98.

    Google Scholar 

  10. C. R. Nascimento and M. L. Dias, J. Polym. Eng., in press.

  11. S. M. Aharoni, W. B. Hammond, J. S. Szobota and D. Masilamani, J. Polym. Sci.: Polym. Chem., 22 (1984) 2579.

    Google Scholar 

  12. B. Jacques, J. Devaux, R. Legras and E. Nield, Polymer, 37 (1996) 1189.

    Google Scholar 

  13. G. Giannotta, R. Po, N. Cardi, E. Tampellini, E. Occhiello, F. Garbassi and L. Nicolais, Polym. Eng. Sci., 34 (1994) 1219.

    Google Scholar 

  14. H. W. Starkweather Jr., P. Zoller and G. A. Jones, J. Polym. Sci.: Polym. Phys., 21 (1983) 295.

    Google Scholar 

  15. B. Jacques, J. Devaux, R. Legras and E. Nield, Polymer, 37 (1996) 4085.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, M.L., Nascimento, C.R. Thermal properties of post-consumer PET processed in presence of phosphites. Journal of Thermal Analysis and Calorimetry 69, 551–559 (2002). https://doi.org/10.1023/A:1019963923884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019963923884

Navigation