Journal of Sol-Gel Science and Technology

, Volume 25, Issue 2, pp 147–157 | Cite as

Structural and Physical Properties of La2/3Ca1/3MnO3 Prepared via a Modified Sol-Gel Method

  • S. Mathur
  • H. Shen


High purity powder of manganese perovskite, La2/3Ca1/3MnO3, is prepared using a modified sol-gel synthesis based on the dissolution and homogenisation of metal salts in ethanol-acetic acid mixture without using any complexing aid (e.g., polyol or polyhydroxy acid, etc.), which is essentially used in the polymeric precursor routes. This modification minimises the organic contamination in the resulting ceramic that is formed as single perovskite at 650°C, after short calcination time periods. The formation of a monophasic material and absence of second phases or phase segregation was confirmed by powder X-ray diffraction, energy dispersive X-ray and electron microscopy of the ceramic calcined at higher temperatures (800–1400°C). The calcined samples are nanocrystalline up to 1000°C (average particle size, ∼44 nm) however, significant particle growth is observed at higher temperatures with micron-sized grains present in the sample sintered at 1400°C. The sample exhibits the characteristic colossal magnetoresistance behaviour. Owing to the high chemical and structural purity of the obtained ceramic, the intrinsic bulk features like metal-insulator transition and ferromagnet-antiferromagnet behaviour of the polycrystalline sample are comparable to those observed in the single crystal La2/3Ca1/3MnO3 specimen, used as a reference. The single-crystal-like properties are also corroborated by the observation of a sharp metallic fermi edge in the UPS measurements. The variable temperature photoemission spectra reveal a temperature dependent redistribution of spectral weight close to the fermi level corroborating the temperature dependent resistance and magnetoresistance of the sample. The material shows a homogeneous grain size and a high sinterability as shown by TEM and SEM studies, respectively. XPS study indicates a charge carrier hopping between Mn3+(3d4) and Mn4+(3d3) sites.

sol-gel precursor colossal magnetoresistance nanocrystalline oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).Google Scholar
  2. 2.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen, Science 264, 413 (1994).Google Scholar
  3. 3.
    S.P. Isaac, N.D. Mathur, J.E. Evetts, and M.G. Blamire, Appl. Phys. Lett. 72, 2038 (1998).Google Scholar
  4. 4.
    X.L. Wang, S.X. Dou, H.K. Liu, M. Ionescu, and B. Zeimetz, Appl. Phys. Lett. 73, 396 (1998).Google Scholar
  5. 5.
    E. Herreo, J. Alonso, J.L. Martinez, M. Vallet-Regi, and J.M. Gonzalez-Calbet, Chem. Mater. 12, 1060 (2000).Google Scholar
  6. 6.
    R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, and C.N.R. Rao, Appl. Phys. Lett. 68, 2291 (1996).Google Scholar
  7. 7.
    L. Balcells, J. Fontcuberta, B. Martinez, and X. Obradors, Phys. Rev. B 58, 697 (1998).Google Scholar
  8. 8.
    X.L. Wang, J. Horvat, H.K. Liu, and S.X. Dou, Solid State Commun. 108, 661 (1998).Google Scholar
  9. 9.
    J.H. Wang, H.Y. Chen, J.H. Wu, Z.X. Liu, T.Y. Chen, and D.S. Dai, Solid State Commun. 108, 701 (1998).Google Scholar
  10. 10.
    Z. Jin, W. Tang, J. Zhang, and Y. Du, J. Mag. Magnet. Mater. 187, 237 (1998).Google Scholar
  11. 11.
    A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, London, 1986).Google Scholar
  12. 12.
    G. Goodman, in Ceramic Materials for Electronics, edited by R.C. Buchanan (Marcel-Dekker, New York, 1986).Google Scholar
  13. 13.
    E. Wu, K.C. Chen, and J.D. Mackenzie, in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (North Holland, Amsterdam, 1984).Google Scholar
  14. 14.
    R.E. Riman, High-Performance Ceramics, edited by R. Pugh and L. Bergstroem (Marcel-Dekker, New York, 1993).Google Scholar
  15. 15.
    C.D. Chandler, C. Roger, and M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).Google Scholar
  16. 16.
    L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).Google Scholar
  17. 17.
    M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, and V. Huch, J. Mater. Chem. 9, 3069 (1999).Google Scholar
  18. 18.
    A.D. Polli, F.F. Lange, M. Ahlskog, R. Menon, and A.K. Cheetham, J. Mater. Res. 14, 1337 (1999).Google Scholar
  19. 19.
    P.S. Devi and J. Mater. Chem. 3, 373 (1993).Google Scholar
  20. 20.
    L.W. Tai and P.A. Lessing, J. Mater. Res. 7, 502 (1992).Google Scholar
  21. 21.
    N. Zhang, W. Ding, W. Zhong, K. Du, K. Wang, and Y. Du, Appl. Phys. A 65, 77 (1997).Google Scholar
  22. 22.
    M. Verelst, N. Rangavittal, C.N.R. Rao, and A. Rousset, J. Solid State Chem. 104, 73 (1993).Google Scholar
  23. 23.
    N. Fujihira, T. Sei, and S. Tsuchiya, J. Sol-Gel Sci. Tech. 4, 135 (1995).Google Scholar
  24. 24.
    S. Bilger, E. Syskakis, A. Naoumidis, and H. Nickel, J. Am. Ceram. Soc. 75, 964 (1993).Google Scholar
  25. 25.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978).Google Scholar
  26. 26. (a)
    Joint Committee for Powder Diffraction Standards, JCPDS Powder Diffraction File, File Card Nos. [46-0513] and [44-1040] (1990); (b) P. Scherrer, Göttinger Nachrichten 2, 98 (1918).Google Scholar
  27. 27.
    H.Y. Hwang, S-W. Cheong, N.P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
  28. 28.
    K. Steenbeck, T. Eick, K. Kirsch, K. O'Donnell, and E. Steinbeiβ, Appl. Phys. Lett. 71, 968 (1997).Google Scholar
  29. 29.
    J.H. Park, E. Vescovo, H.J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).Google Scholar
  30. 30.
    (a) T. Okuda, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B. 61, 8009 (2000); (b) H.Y. Hwang, S-W. Cheong, N.P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
  31. 31.
    T. Saitoh, A.E. Bocquet, T. Mizokava, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 51, 13942 (1995).Google Scholar
  32. 32.
    V. Dicastro and G. Polzonetti, J. El. Spectr. Rel. Phen. 48, 117 (1989).Google Scholar
  33. 33.
    D.D. Sarma, N. Shanthi, S.R. Krishnakumar, T. Saitoh, T. Mizokawa, A. Sekiyama, K. Kobayashi, A. Fujimori, E. Weschke, R. Meier, G. Kaindl, Y. Takeda, and M. Takano, Phys. Rev. B 53, 6873 (1996).Google Scholar
  34. 34.
    (a) C. Zener, Phys. Rev. 82, 403 (1951); (b) P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955); (c) J. Goodenough, Phys. Rev. 100, 564 (1955); (d) P.-G. de Gennes, Phys. Rev. 118, 141 (1960).Google Scholar
  35. 35.
    M. Oku, K. Hirokawa, and S. Ikeda, J. El. Spectr. Rel. Phen 7, 465 (1975).Google Scholar
  36. 36.
    (a) J.H. Park, Nature 392, 794 (1999); (b) J.H. Park, C.T. Chen, S-W. Cheong, W. Bao, G. Meigs, V. Chakarian, and Y.U. Idzerda, Phys. Rev. Lett. 76, 4215 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Mathur
    • 1
  • H. Shen
    • 1
  1. 1.Institute of Inorganic ChemistrySaarland UniversitySaarbrueckenGermany

Personalised recommendations