Plant Molecular Biology

, Volume 50, Issue 4–5, pp 803–818 | Cite as

AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome

  • Mingliang Xu
  • Schuyler S. Korban
Article

Abstract

The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is ∼ 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.

apple scab bacterial artificial chromosome (BAC) contig amplified fragment length fragment (AFLP) sequence characterized amplified region (SCAR) Vf gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bénaouf, G. and Parisi, G. 2000. Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90: 236–242.Google Scholar
  2. Bournival, B.L. and Korban, S.S. 1987. Electrophoretic analysis of genetic variability in the apple. Scient. Hort. 31: 233–243.Google Scholar
  3. Cao, Y., Kang, H.L., Xu, X., Wang, M., Dho, S.H., Huh, J.R., Lee, B.J., Kalush, F., Bocskai, D., Ding, Y., Tesmer, J.G., Lee, J., Moon, E., Jurecic, V., Baldini, A., Weier, H.U., Doggett, N.A., Simon, M.I., Adams, M.D. and Kim, U.J. 1999. A 12-Mb complete coverage BAC contig map in human chromosome 16p13.1-p11.2. Genome Res. 9: 763–774.Google Scholar
  4. Chen, C.X. and Gmitter, F.G. 1999. Direct cloning and sequencing of bacterial artificial chromosome (BAC) insert ends based on double digestion. Plant Mol. Biol. Reptr. 17: 231–238.Google Scholar
  5. Crosby, J.A., Janick, J., Pecknold, P.C., Korban, S.S., O'Connor, P.A., Ries, S., Goffreda, J. and Voordeckers, A. 1992. Breeding apples for scab resistance: 1945-1990. Fruit Var. J. 46: 145-166.Google Scholar
  6. Gardiner, S.E., Bassett, H.C.M., Noiton, D.A.M., Bus, V.G., Hofstee, M.E., White, A.G., Ball, R.D., Forster, R.L.S. and Rikkerink, E.H.A. 1996. A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor. Appl. Genet. 93: 485–493.Google Scholar
  7. Gessler, C. 1989. Genetics of interaction Venturia inaequalis-Malus: The conflict between theory and reality. Pages 168-190 in: Integrated Control of Pome Fruit Diseases, Vol. II. C. Gesseler, D.J. Butt, and B. Koller, eds IOBC/WPRS, Zurich, Switzerland.Google Scholar
  8. Gianfranceschi, L., Koller, B., Seglias, N., Kellerhals, M. and Gessler, C. 1996. Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor. Appl. Genet. 93: 199–204.Google Scholar
  9. Haanstra, J.P.W., Wye, C., Verbakel, H., Meijer-Dekens, F., van den Berg, P., Odinot, P., van Heusden, A.W., Tanksley, S., Lindhout, P. and Peleman, J. 1999. An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L-pennellii F-2 populations. Theor. Appl. Genet. 99: 254–271.Google Scholar
  10. Hemmat, M., Weeden, N.F., Aldwinckle, H.S. and Brown, S.K. 1998. Molecular markers for the scab resistance (Vf) region in apple. J. Amer. Soc. Hort. Sci. 123: 992–996.Google Scholar
  11. Klein, P.E., Klein, R.R., Cartinhour, S.W., Ulanch, P.E., Dong, J., Obert, J.A., Morishige, D.T., Schleuter, S.D., Childs, K.L., Ale, M. and Mullet, J.E. 2000. A high-throughput AFLP-based method for constructing intergrated genetic and physical maps: Progress towards a sorghum genome map. Genome Res. 10: 789–807.Google Scholar
  12. Korban, S.S. and Chen, H. 1992. Apple. In: Litz R. and F.A. Hammerschalg (Eds) Biotechnology of perennial fruit crops. CAB Intl., Wallingford, UK, pp. 203–227.Google Scholar
  13. Lukowitz, W., Gillmor, C.S. and Scheible, W.R. 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123: 795–805.Google Scholar
  14. Manganaris, A.G., Alston, F.H., Weeden, N.F., Aldwinckle, H.S., Gustafson, H.L. and Brown, S.K. 1994. Isozyme locus Pgm-1 is tightly linked to a gene (Vf ) for scab resistance in apple. J. Amer. Soc. Hort. Sci. 119: 1286–1288.Google Scholar
  15. Marra, M.A., Kucaba, T.A., Dietrich, N.L., Green, E.D., Brownstein, B., Wilson, R.K., McDonald, K.M., Hillier, L.W., McPherson, J.D. and Waterston, R.H. 1997. High throughput fingerprint analysis of large-insert clones. Genome Res 7: 1072–1084.Google Scholar
  16. McPherson, J.D. 1997. Sequence ready-or not. Genome Res. 7: 1111–1113.Google Scholar
  17. Meyers, B.C., Chin, D.B., Shen, K.A., Sivaramakrishnan, S., Lavelle, D.O., Zhang, Z. and Michelmore, R.W. 1998. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell, 10: 1817–1832.Google Scholar
  18. Nakamura, S., Asakawa, S., Ohmido, N., Fukui, K., Shimizu, N. and Kawasaki, S. 1997. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta (2) using a highly representative rice BAC library. Mol. Gen. Genet. 254: 611–620.Google Scholar
  19. Niederfuhr, A., Hummerich, H., Gawin, B., Boyle, S., Little, P.F.R. and Gessler, M. 1998. A sequence-ready 3-Mb PAC contig covering 16 breakpoints of the Wilms tumor aniridia region of human chromosome 11p13. Genomics 53: 155–163.Google Scholar
  20. Patocchi, A., Vinatzer, B.A., Gianfraneschi, L., Tartarini, S., Zhang, H.B., Sansavini, S. and Gessler, C. 1999. Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol. Gen. Genet. 262: 884–891.Google Scholar
  21. Parisi, L. and Lespinasse, Y. 1996. Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.). Plant Dis. 80: 1179–1183.Google Scholar
  22. Parisi, L., Lespinasse, Y., Guillaumes, J. and Krueger, J. 1993. A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83: 533–537.Google Scholar
  23. Richter, T.E. and Ronald, P.C. 2000. The evolution of disease resistance genes. Plant Mol. Biol. 42: 195–204.Google Scholar
  24. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. 'Molecular Cloning: A Laboratory Mannual' 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  25. Schmidt, R., West, J., Love, K., Lenehan, Z., Lister, C., Thompson, H.Y., Bouchez, D. and Dean, C. 1995. Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270: 480–483.Google Scholar
  26. Soderlund, C., Humphray, S., Dunham, A. and French, L. 2000. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res. 10: 1772–1787.Google Scholar
  27. Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. 2000. Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA. 97: 13436–13441.Google Scholar
  28. Tanksley, S.D., Ganal, M.W. and Martin, G.B. 1995. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63–68.Google Scholar
  29. Tartarini, S. 1996. RAPD markers linked to the Vf gene for scab resistance in apple. Theor. Appl. Genet. 92: 803–810.Google Scholar
  30. Tartarini, S., Gianfranceschi, L., Sansavini, S. and Gessler, C. 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed. 118: 183–186.Google Scholar
  31. Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T. and McCouch, S.R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697–712.Google Scholar
  32. Vollrath, D. and Jaramillo-Babb, 1999. A sequence-ready BAC clone contig of a 2.2-Mb segment of human chromosome lq24. Genome Res. 9: 150–157.Google Scholar
  33. Wise, R.P. 2000. Disease resistance: what's brewing in barley genomics. Plant Dis. 84: 1160–1170.Google Scholar
  34. Xu, M.L. and Korban, S.S. 2000. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor. Appl. Genet. 101: 844–851.Google Scholar
  35. Xu, M.L., Huaracha, E. and Korban, S.S. 2001a. Development of sequence characterized amplified regions (SCARs) from AFLP markers tightly linked to the Vf gene in apple. Genome 44: 63–70.Google Scholar
  36. Xu, M.L., Song, J.Q., Cheng, Z.K., Jiang, J.M. and Korban, S.S. 2001b. A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44: 1104–1113.Google Scholar
  37. Xu, M.L., Song, J.Q., Jiang, J.M. and Korban, S.S. 2001c. Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush. Acta Hort. (in press).Google Scholar
  38. Yang, H. and Korban, S.S. 1996. Screening apples for OPD20/600 using sequence-specific primers. Theor. Appl. Genet. 92: 263–266.Google Scholar
  39. Yang, H., Korban, S.S., Kruger, J. and Schmidt, H. 1997a. A randomly amplified polymorphic DNA (RAPD) marker tightly linked to the scab-resistance gene Vf in apple. J. Amer. Soc. Hort. Sci. 122: 47–52.Google Scholar
  40. Yang, H., Korban, S.S., Kruger, J. and Schmidt, H. 1997b. The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94: 175–182.Google Scholar
  41. Young, W.P., Schupp, J.M. and Keim, P. 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 99: 785–792.Google Scholar
  42. Zhang, H.B. and Wing, R.D. 1997. Physical mapping of the rice genome with BACs. Plant Mol. Biol. 35: 115–127.Google Scholar
  43. Zhu, H., Blackmon, B.P., Sasinowski, M. and Dean, R.A. 1999. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea. Genome Res. 9: 739–750.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mingliang Xu
    • 1
  • Schuyler S. Korban
    • 1
  1. 1.Department of Natural Resources and Environmental SciencesUniversity of Illinois, 310 Madigan BuildingUrbanaUSA

Personalised recommendations